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INTRODUCTION 

Semidiones 

Semidiones (1-6) ,  which are the vinylog of the para­

magnetic superoxide ion, Og", have been studied in great 

detail over the past decade. The first aryl substituted 

semidione was studied in 196) by Dehl and Fraenkel (7), and 

the following year Russell and Strom (8) studied aliphatic 

semidiones, During this time, a wealth of data has been 

accumulated for numerous systems. 

Semidiones can be generated by numerous methods. Basic 

oxidation of ketones having an a-methylene group, hydrolysis 

and oxidation of bis(trimethylsiloxy)alkenes or esters of a-

hydroxy ketones, and even the acyloin condensation (9) are 

some of the methods which can serve to generate these radi­

cals. In general, once formed, most semidiones are then 

stable for hours at room temperature. 

The interpretation of the esr spectra of semidiones has 

led to numerous conclusions concerning assignments of long-

range hyperfine splittings in bicyclic compounds (IO-16), 

assignments of configuration in steroids and decalones (17-

20), and conformational assignments (11, 14, 21) in mono-

and bicyclic systems. These and other applications have 

recently been reviewed (5> 22, 25). 

This particular work was undertaken in order to study 

cycloheptanesemidione and related systems. Our attention 

was first focussed on the determination of the conformation 
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of cycloheptanesemidione. This work was then extended to 

the determinations of conformations of bicyclic molecules, 

which contained the cycloheptanesemidione moiety. Next, an 

examination of the geometrical and structural dependence of 

long-range hyperfine splittings of hi- and polycyclicsemidi-

ones, which again contained the seven-membered ring, was 

undertaken. Finally, the use of Extended Huckel calculations 

as a basis for prediction of hyperfine splitting constants 

in semidiones, was examined. 
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CYCLOHEPTANESEMIDIONE 

Relatively few conformational studies have been per­

formed on the cycloheptene type ring system. Allinger and 

Szkrybalo (24) have concluded from dipole moment studies that 

l,2-benzocyclohepten-5-one exists mainly in the chair form. 

Later calculations by Allinger et (25 ) suggest that the 

boat form of cycloheptene would be more stable than the chair 

form. 

Nmr studies on substituted cycloheptenes and benzocyclo-

heptenes have shown that one (26-27) or more (28-30) confor­

mations are present in solution, with the chair form predom­

inating in some cases and the boat form in others. 

Russell, Underwood, and Lini (21) have demonstrated that 

cyclohexanesemidione and cyclohexene have similar conforma­

tions with similar barriers for ring inversion. In their 

studies they also obtained the esr spectrum of cycloheptane-

semidione (l) by generation of the radical from the cor­

responding a-hydroxy ketone. Application of the reactions 

of Scheme I to diethyl pimelate gave a clean, strong, well re­

solved signal of semidione I. When the solution was cooled to 

-10°, the resolution improved and additional lines were appar­

ent in the spectrum (Figure l). The spectrum consists of 

a 6.60 gauss (G) triplet assigned to the a-axial protons, 

a 2.05 G triplet due to two of the )3-protons, a 0.28 G quin­

tet due to the two «-equatorial protons and the other two #-

protons, and finally a 0.5^ G doublet from one of the y-pro-
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Figure 1. The first derivative esr spectrum of cycloheptanesemidione (I^ 
in DMSO at -10°. 
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Scheme I 

EtIÔ 
OaEt (CHalsSiCl 

^OSifCHsjs 

DMSO 
» 

KOt-Bu 

tons. These assignments were confirmed by preparing I in 

DMSO-d (Figure 2), and observing the exchange of the a-pro-
6 

tons for deuteriums. 

By simultaneous solution of the Heller-McConnell equa­

tions, a^^^=p Bcos^0 and a^®'^=p Bcos^ô , two solutions are 
C C G 

obtained for the dihedral angles of the a-hydrogens, 8^^- -19° 

and 8^^= -39°. The first solution is identical with the value 

of 6^^= -19° obtained by a measurement for cycloheptene using 

nmr spectroscopy (31). Thus the conformation of cycloheptane-

semidione is similar to cycloheptene. The magnetic nonequiva­

lence of the a-protons demands a single populated conformation, 

which is "frozen" with respect to the esr time scale. The 

doublet splitting from the y-position, and hence the non-

equivalence of the y-hydrogens eliminates the twist boat from 
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Figure 2. The first derivative esr spectrum of cycloheptanesemldione (I) 
in DMSO-ds at 5 showing complete exchange of the a-protons. 
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consideration. The magnitude of the a-hyperfine interactions 

are consistent with either the chair (Ic) or the boat (lb) 

conformation. 

H, a Ic lb 

It was hoped that the preparation of a number of methyl-

substituted cycloheptanesemidiones (Chart l) would help solve 

the problem. These substituted compounds were prepared from 

the commercially available glutaric acids using the reactions 

outlined in Scheme 2 and Scheme 1. The observed hfsc for 

cycloheptanesemidione and the methyl derivatives are listed 

in Table I, 

The spectrum of y-methylcycloheptanesemidione II is shown 

in Figure 3. Since the analysis gives hfsc quite close to 

those of the parent compound except for the removal of the 

doublet splitting, and since the methyl group would presumably 

occupy the equatorial position, the assignment of the y-hfsc 

must be to an equatorial proton whether the conformation is 

Ic or lb. 

The spectrum of y,y-dimethylcycloheptaneseraidione is 

shown in Figure 4. The compound was prepared for two reasons. 
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Chart I 

II 

CHs 

CHs 

III IV 

V 

CHs 

VI 
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Table 1, Hyperfine splitting constants® and assignments for substituted cycloheptane-
semidiones at 25° in DM80. 

Substituent 

None (I) 6.60  (2) ,  0 .28  (2) 2.05  (2) ,  

00 CV
J o
 (2) 0.54  (1) 

I in DMSO-ds 1.00  (2D)  2 .05  (2) ,  0 .28  (2 ) ,  0.54 (1) 

y-methyl (II) 6.62  (2), 0.29  (2) 1.88  (2) ,  0 .29  (2) 

y  ,y  -dimethyl (ill) 6.90  (2) ,  0 .29  (2)  1.85 (2) ,  0 .29  (2) 

jS-methyl (IV) 6.60  (2), 0.32  (2)  2 .15  (1), 0.32  (2) -0 .32  (1) 

IV in DMSO-ds 1.00  (2D) 2.15  (1), 0.28  (2) 0.40  (1) 

els -$ ,0  ' -dimethyl (V) 6.50  (2) ,  0 .32  (2) — — — — 0.32  (2) 0.32  (1) 

trans -g ,j8 ' -dimethyl (VI ) 6.81  
7 .25  a i '  0 .33  (2) 0.66  (1) ,  0 .33  (1) 0.33  (1) 

VI in DMSO-ds 1.05 (2D) J 0.66  (1 ) ,  0 .33  (1) 0.33  (1) 

®In gauss. 

^The nonequivalence is caused by a loss of symmetry due to the methyl groups. 
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Figure 3. The first derivative esr spectrum of y-methylcycloheptaneseml-
dlone (II) In DMSO. 
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Figure 4. The first derivative esr spectrum of y/y-dimethylcycloheptane 
semidione (III) in DMSO. The radical concentration is slowly 
decreasing. 
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Scheme II 

COgH 

.CO2H 
SOCIp . 
OeHs * COCl 

•COCl 

COCHN2 

COCHN2 
CH.qCOgAg 

CH3OH 
EtaN O2CH3 

CO2CH3 

First, to see if the introduction of an axial methyl group 

would have an appreciable effect on the geometry of the mole­

cule, and secondly, the axial methyl might also raise the 

ground state energy of the molecule by the axial-axial inter­

actions and hence lower the energy of activation for ring 

inversion. As seen by the hfsc (Table I), the geometry under­

went little change since calculations predict (52) that even 

a small change in geometry would have a large effect on the 

hfsc. In addition, the ring remained conformationally fro-en. 

It has been demonstrated in numerous systems that the 

hfsc of a methylene hydrogen atom with a trans-coplanar (zig­

zag) arrangement of bonds to the p^ orbital of the carbonyl 

carbon, is much larger than the hfsc of the other methylene 

hydrogen atom (23). For Ic the ^-equatorial hydrogen atoms 

have the desired trans arrangement of bonds while for lb the 

j3-axial hydrogen possesses the proper geometry. Experimental­
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ly, the j8-hydrogens of I with the zig-zag arrangement have a 

hfsc of 2.05 G while the other jS-hydrogens have a hfsc of only 

0.28 G. Introduction of a ^-methyl (in IV) and cis ' -di -

methyl (in V) substitaents into cycloheptanesemidione gave 

spectra in which, respectfully, one (Figures 5 and 6) and two 

(Figure 7) of the 2.05 G hfsc were lost by methyl substitution. 

Since one or two of the /S-methyl groups would occupy an equa­

torial position in either Ic or lb, it follows that the #-

hydrogens with the 2.O5 G hfsc are equatorial hydrogens and 

that the conformation of cycloheptanesemidione is most likely 

Ic, the chair structure. 

A possibility exists that equatorial substituents in lb 

might greatly reduce the magnitude of the jS-hfsc of axial 

hydrogens from 2 G to 0.3 G. Trans,;3'-dimethylcycloheptane-

semidione (VI), whose spectra are given in Figures 8 and 9, 

completely eliminates this possibility unless it is also pos­

tulated that an axial-jS-substituent increases the equatorial 

#-hydrogen hfsc from 0.5 to 0.66 G. 

On the other hand, the result observed for the trans -

0,0'-dimethyl semidione is in perfect agreement with a pre­

diction based on structure Ic. The equatorial methyl would 

remove one of the 2.05 G hfsc of the parent semidione while 

the axial methyl would reduce the magnitude of the zig-zag 

equatorial 0-hydrogen by a factor of two-threefold using VII 

(10) and VIII (53-3^) as models. 

Considering the 7-position, a further possibility of 
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Figure 6. The first derivative esr spectrum of jS-methylcycloheptanesemi-
dione (IVl in DMSO-de showing exchange of the a-protons. 
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Figure The first derivative esr spectrum of cis-j3 ' -dlmethylcyclo-
heptanesemidione (V) in DMSO. A small amount of VT is present 
as an impurity. 
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Flgure 8. The first derivative esr spectrum of trans-^,6'-dimethylcyclo-
heptanesemidione (VI) in DM80. "" 
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Figure 9, The first derivative esr spectrum of t rans- f i ,B'-dimethylcyclo-
heptanesemldione in DMSO-de showing exchange of the a-protons. 
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(5.1) 

0 

0 "  

Vila Vllb 

(4.-' 
H(0.8) CH* 

H 

Villa 

0 

(1.5)H 

Vlllb 0 "  

0 

assigning the )3-hfsc, and therefore the conformation, without 

the perturbations of alkyl substitution, was apparent. The 

chair conformation has the y-equatorial hydrogen in a 2? V 

zig-zag arrangement and this proton would be the cause of the 

doublet splitting. For the boat form, splitting from either 

y-hydrogen was possible, and in fact both hydrogens are seen 

in some of the polycyclic compounds. It was of interest to 

determine which hydrogen causes the doublet hfsc in the boat. 

A model compound which has the seven-membered ring in 

the boat form was sought. The bicyclo[4.2.1]non-$-ene system 

seemed a likely candidate. The olefinic bond would occupy 

the least hindered side of the molecule, and comparing the 

structure to the bicyclo[2.2.1]heptane system, the exo side 
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H H 

0 

IXb IXc G* 

would be the least hindered one, and the conformation would 

therefore be IXb. The preparation of semidione IX is given 

in Scheme III. Norbornene was oxidized with potassium per­

manganate to cis-1,3-cyclopentanedicarboxyllc acid, which was 

chain extended by the reactions of Scheme II, and converted to 

the semidione using Scheme I. 

The analysis of the spectrum. Figure 10, gives a large 

triplet of 9.85 G, a smaller triplet of I.56 G, two more small 

triplets of O.55 and 0.25 G, and one doublet splitting of O.54 

G. The magnitude of this doublet confirms the conformational 

assignment to IXb when it is compared to the doublet splittings 

in X and XI which had been previously prepared by Whittle (14). 

In X, which has the seven-membered ring locked in the boat 

form, the doublet is only 0.40 G, whereas in XI, the seven-

membered ring is in the chair and a 2.40 G is observed. 

To determine which hydrogen, or , in IX was giving 

the doublet, IX was prepared with deuterium in the 9-position 

according to the reactions in Scheme IV. Norbornene was 

brominated to give 2,7-dibromobicyclo[2.2.1]heptane, which on 
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Scheme III 

KMnO. 
COpH 

Scheme II, 
CO2CH3 

COsCHs 
Scheme I^ 

a%=9.85  (2H) 

1.56 (2H) 

0.53  (2H)  Hg or Hf 
0 .25  (2H) or «a 
0 .54  (IH) Hg or Ha 

IX 

H(0.40) 
(2.40)H 
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Figure 10. The first derivative esr spectrum of bicyclo[4.2.l]nonane-2,4-
semidione (IXl in DMSO. 
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Scheme IV 

Br 

Br KOt -Bu .Br 

Br 

Scheme III 

ijCHsOH 
CH3ON& fA  

2)NaOH,A 
IX-di 

(50^)D. JP(50^) 

Scheme II 

iOzH 

(50#) 
D(50#) 

IX-di 
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treatment with potassium t-butoxide gave anti-7-bromobicyclo-

[2.2.1]heptene. Reacting the bromide with tri-n-butyltindeu-

teride (15,55,56) gave a mixture of anti-7-deuteriobicyclo-

[2.2.1]heptene and syn-7-deuteriobicyclo[2.2.1]heptene in the 

ratio of 85:15 (15). Using Scheme. Ill, IX was prepared with 

deuterium in the 9-position anti ;syn of 85:15. In addition, 

the isomers were also equilibrated (Scheme IV) to give a 1:1 

mixture of deuterated material. The center portion of the 

spectrum of IX is compared to the analogous portions of the 

spectra of IX with the different deuterium distributions in 

Figure 11. As more and more of the anti-9-hydrogen is re­

placed, the doublet splitting is removed and must be assigned 

to Hg, which is the equatorial proton in the y-position of 

the boat conformation. 

Whether or not the boat or chair conformation of cyclo-

heptanesemidione was predominant, the y-equatorial hydrogen 

would be the one causing the doublet splitting. This was 

confirmed by y-methylcycloheptanesemidione II, where the 

doublet splitting was removed upon introduction of the methyl 

group. In Ic, the chair form, the large jS-splitting would be 

0 

a Ic H, a lb 
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Figure 11. The first derivative esr spectra of the center 
group of the large triplet of bicyclo[4.2.1]-
nonane-3,4-semidlone: (A) 85/15 deuterated 
IX-di; (B) 50/50 deuterated IX-di; (C) undeu-
terated IX. 
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from Hg which is trans with respect to whereas in the boat 

form lb, the large jg-hfsc would be from which is cis with 

respect to Introduction of cis deuteriums into the mole­

cule at this position would permit an indisputable assignment 

of splittings at the ^-position and hopefully confirm the con­

clusion reached in the examination of the methyl-substituted 

cycloheptanesemidiones, 

Introduction of the cis-deuteriums was accomplished by 

the reactions in Scheme V. Reaction of 1,4-cyclohexadiene 

with either deuterodiimide, or deuterodiborane followed by 

reaction with acetic acid-d would add the deuteriums cis 

(37>58) and give the cis-4,5-dideuterocyclohexene. Oxidation 

with potassium permanganate to adipic acid, esterfication to 

Scheme V 

or 1) BgDs 
SjCHaCOgD 

D 
1)KMn04 
2) CH.-.OH 
3)CH30H, 
NaOH, 1 eq. 

n D 

1)Scheme II 

2)Scheme I 

0 *  

.0 

XII 

to dimethyl adipate, followed by basic hydrolysis with one 

equivalent of sodium hydroxide gave the monoacid-ester. Chain 
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extension with Scheme II and closure to the semidione (Scheme 

I) gave the desired product XII. The spectrum of XII, Figure 

12, starting with deuterodiimide was identical to the spectrum 

obtained when deuterodiborane was used to begin the reaction 

sequence. 

For the analysis of the spectrum, which shows two dif­

ferent radicals, it was easiest to consider the possible 

radicals and their predicted splitting constants. If the 

chair from was present, radicals XIIci and XllCg (Chart II) 

would be seen*, if however, the boat form was present, Xllbi 

and Xllba would be seen. The two important possibilities are 

Xllcs and Xllbg which would still have both 2.O5 G splittings, 

and therefore have lines which were not overlapping with the 

lines of the other radical. The center of the outside sets 

from the 2.05 G triplet are marked with arrows (Figure 12). 

This set analyzes for a 1:5 0-1 quartet due to three equiva­

lent hydrogens and hence the radical seen is Xllcg and not 

Xllbg (which would also show a O.54 G doublet). This confirms 

the result obtained from the analyses of the alkyl-substituted 

cycloheptanesemidiones, namely that the chair form and not the 

boat form is the predominant conformation in solution. 
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Figure 12. The first derivative esr spectrum of cis-4_,5-dideuterocyclo-
heptanesemidione (XII) in DM80 at 0®. 
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Chart II 

0 

XIIci 

a^=6.60 (2H) 

2.05 (IH) 

0.28 (4H) 

0.52 (ID) 

0.54 (IH) 

Xllbi 

a^=6.60 (2H) 

2.05 (2H) 

0.28 (4H) 

0.52 (ID) 

a^=6.60 (2H) 

2.05 (2H) 

0.28 (5H) 

Xllbs 

a^=6,60 (2H) 

2.05 (2H) 

0.28 (5H) 

0.54 (IH) 
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CONFORMATIONAL INTERCONVERSIONS AND PREFERENCES OF 
THE CYCLOHEPTANESEMIDIONE RING IN BICYCLIC COMPOUNDS 

Although cycloheptanesemidione is conformationally frozen 

with respect to the esr time scale, the possibility of lowering 

the energy of activation for ring flip still existed. The man­

ner in which this could "be done, would be to make a bicyclic 

compound wherein the steric interactions raise the ground-state 

energy of the seven-merabered ring. Three systems in which this 

could occur were bicyclo[3.3.2]decane (XIII^, bicyclo[3.2.2]-

nonane (XIV), and bicyclo[4.1.1]octane (XV). However, the main 

XIII XIV XV 

attractions of these systems were the conformational preferences 

that they would show and their relationship to the saturated 

and unsaturated hydrocarbons. 

It has been shown that bicyclo[3.3.l]nonane exists in the 

conformation (XVI) where both six-membered rings are in the 

chair form (39-44). On the basis of chemical shift data in a 

recent nmr study, Doyle and Parker (4$) have assigned an anal­

ogous conformation (XVII) to bicyclo[3.3.2]nonan-3-ol. An as­

signment of conformation to bicyclo[3.3.2]decane-9,10-semidione 
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XVI 

HO 

XVII 

(XVIII) would allow assignment of conformation to the parent 

olefin. 

The t)icyclo[5.!5.2]decane system is especially interesting 

in that three distinct conformations are possible. The esr 

0 

0 '  

XVIIIb XVIIIa 

spectra of semidiones in these conformations would be quite 

distinctive and would allow an unambiguous assignment of con­

formation. The ̂ -hydrogens which have a trans-coplanar ar­

rangement of bonds to the carbon p^ orbital of the TT-system, 

have large hyperfine splittings, 1.8 to 2.8 G, when the seven-

member ed ring is in the chair form (see p, 58). However, when 

the seven-membered ring is a boat, the splittings are 0.5 G 

or less. Thus XVIIIa would have two splittings of G, XVIIIb 

would not show any large hfsc, and XVIIIc would have four large 
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hfsc's. In addition, XVilla would be the only form which 

could have hydrogens which are different from all the others 

in the molecule, and hence be the only one with doublet split­

tings . 

XVIII was prepared by the synthetic sequence shown in 

Scheme VI. The room-temperature and low-temperature spectra 

of XVIII are shown in Figure 15. The room-temperature spectrum 

gave the following analysis: a^ (2H) 2.36 G, a^ (2H^ 0.54 G, 

and a^ (3 or 5H) 0.1 G. At low temperature the smaller tri­

plet split into a doublet of doublets, a^^ 0.42 and 0.77 G. 

Thus conformation XVilla is required both from the doublet 

splittings and from the number of jS-hydrogens with a trans-

coplanar arrangement of bonds leading to a^ --2 G. 

The temperature dependent spectra of this system, Fig­

ures 15 and 14, do present one problem. There are two pos­

sible explanations of them, and neither is wholly consistent 

with previous results. Considering the room temperature 

Dr. R. S. Givens has prepared semidione XIX wherein the 
geometry is locked in that of XVIIIc and his results are in 
total agreement with our predictions. 

H H 

0* 

o 
a^=2.26 (4h) 

XIX 
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Scheme VI 

0 
1)(COgEtjs 

NaOEt 

2TÂ * 

COsEt 

NaOEt 

,CHO 

OsEt ) .COzEt 

NaOEt 

2) Ha/Pd' 

lOgEt 1) NaOH CO2H 

COPH 

1)BF3-gCH30H 

2)Scheme I 

XVIII 
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Figure 13. The room-temperature and low-temperature first 
derivative esr spectra of bicyclo[3.3-2]decane-
9jlO-semidione (XVIII) in 80/20 DMP-DMSO. 
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Figure l4. The high-temperature first derivative esr spectra of bicyclo-
[3.3.2]decane-9,10-semidione (XVIII) in DMSO. 
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spectrum, if a small doublet of 0.1 G is present, then the 

system must be conformationally frozen. The O.55 G triplet 

is then due to two protons (H^ and which are fortuitously 

magnetically equivalent, and which become non-equivalent as 

the temperature is lowered due to some slight structural 

change. The additional lines, which appear between the large 

triplet lines, in the high temperature spectrum must then be 

caused by an additional frozen conformation of XVIII. The 

other possible explanation is that the apparent doublet 

splitting is caused by potassium, which has a nuclear spin 

of 3/2, and would give lines with these intensities if an 

even number of protons with the same hfsc were also present. 

The temperature dependence would then be caused by confor­

mational interchange at a rate such that broadening was seen 

by the esr time scale. This then means that the 0.55 G 

triplet (from and or / and coalesces and gives 

a doublet of doublets, with the more reasonable assignment 

being the y-equatorial proton (H^) of the chair and the y -

axial proton (H^) of the boat, or less likely H^/ and H^,. 

The additional lines in the high temperature spectrum are 

then caused by the 2.^6 G triplet from at slow exchange 

becoming a l.lR G quintet from and , at rapid exchange. 

The latter explanation is less likely on two points: first, 

potassium splittings have never been seen in similar systems, 

and secondly, the assignment of the y-hfsc to in the boat 

section is contrary to the results of the bicyclo[4.2.l]nonane 
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system or the assignment of the other y-hfsc to in the 

chair part is contrary to the assignment in cycloheptane 

semidione itself. In either case, the assignment of the pre­

dominant conformation to XVIIIa remains unchanged, and this 

conformation then seems likely for the parent olefin. 

In relating the conformation of XVIII to the confor­

mation of the parent saturated hydrocarbon, it was considered 

worthwhile to determine the relative preferences of the sat­

urated and unsaturated seven-membered rings for the chair 

form. If the seven-membered ring with a semidione group did 

not have as great a preference for the chair as the saturated 

ring, it would be quite possible for XVIII and the parent 

olefin to be in conformation XVIIIa, while the conformation 

of the saturated hydrocarbon is XVIIIc, as was proposed for 

XVII. This question would appear to be answered by the de­

termination of the conformations of XX and XXI, where two 

possibilities exist, XXa and XXIa, or XXb and XXIb. The 

temperature dependent spectra of XX, Figures 15 and 16, were 
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50 

40* 

Figure l6. High-temperature esr spectra of bicyclo[3.2.2]-
nonane-6,7-semidione (XX) in DMSO. 
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XXa, R=H 
XXIa, R=CH3 

XXb, R=H 
XXIb, R=CH3 

determined between -75 ̂ nd 100°. This system possesses a 

small energy of activation for interconversion as does the 

bicyclo[3.2.2]nona-6,8-diene system, (46). Thus, at high 

temperature the two forms are rapidly interconverting and the 

is lowered, the large triplet, from the flexible portion of 

the molecule, coalesces, and at -65°, when ring inversion has 

been slowed, increases to 2.75 G. The magnitude of this 

splitting indicates that the spectrum is due to XXa where 

the seven-membered ring with the semidione group is in the 

chair form. The behavior and results for XXI parallel those 

of XX and are shown in Chart III, with the temperature de­

pendent spectra of Figures 17 and I8. 

The syntheses of XX and XXI are shown in Scheme VII. 

The reactions are all straightforward, however in both cases 

the diesters could not be obtained pure, and an alternative 

preparation of XX was done in order to demonstrate that the 

hfsc are population averaged, with a^ (2 H) 1.95» a^ (2 H) 

1.55, a^ (2 H) 1.40, and a^ (l H) 0.80 G. As the temperature 
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XVIII 

Chart III 

L. T. 

H. T. a^=l.l8 (4H) E 

0.54 (2H) Hg, % or H, 

a^=2.36 (2H) 

0.77 (IH) He 
0.42 (IH) H^ or H^ 

H. T. a%=1.95 (2H) % 
1.55 (2H) Ha 
1.40 (2H) % 
0.80 (IH) Hc 

L. T. a%=2.75 (2H) Hb 
1.55 (4H) Ha/ Hd 
1.12 (IH) Hc 

H. T. a^=1.50 (4H) % 
0.75 (3H) Ha 

L. T, H 

XXI 

=2 .85 (2H) Hb 
1 .55 (2H) Hd 
0 

o
 

00 

(2H) Ha 
0 .90 (IH) Hc 



www.manaraa.com

42 

OAc 

CN 

CN 

NaOH 

OAc 

Scheme VII 
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/L)LiAlH4 
V2)TsCl 

^CHaOTs 
Î HsOTs 
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Pb(0Ac)4 
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Al 

-80° 

\  -60°  

-50 

-40 

-30° 

tr-

- 2 0 °  

Figure 17. Low-temperature first derivative esr spectra of 
endo,endo-8,9-dimethylbicyclo[3.2.2]nonane-6,7-
sëmldîônë (XXI) in 80/20 DMF-DMSO. 
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semidlone obtained from the diester was as formulated. The 

signal from the ketone, although weaker, was identical to 

the one obtained from the diester and both are shown in Fig­

ure 19. 

The results indicate that the seven-membered ring con­

taining the semidlone group prefers the chair conformation 

to a slightly greater extent than does the saturated seven-

membered ring, at least at -75°. Relating this to XVIII, it 

would seem that XVIII would have a greater preference for 

conformation XVIIIc than would the parent hydrocarbon. Since 

XVIII does not assume the conformation XVIIIc it would be un­

likely for the saturated parent system to do so. The insta­

bility of XVIIIc must then be due to the (unfavorable) "sad­

dle" conformation of the eight-membered ring, which is con­

trary to the suggestion of Dale ejb aJ.. (47). Thus confor­

mation XVIIIa is established as the conformation of XVIII 

and as the most likely conformation of the parent hydrocar­

bon and olefin. 

The last conformationally mobile system to be considered 

was XV. Bicyclo[4.1.1]octane-3,4-semidione XXII was prepared 

according to the reactions outlined in Scheme VIII. Initial­

ly the main spectrum shown in Figure 20 was assigned to this 

semidlone. However when semidlone XXIII, bicyclo[5.1.1]hep-

tane-2,3-semidlone, was prepared, the spectrum (Figure 21) 

was identical to that in Figure 20. The spectrum in Figure 

20 shows the presence of an additional radical. When the 
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Figure 19-
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Scheme VIII 

C(CH20H)4 ) (BrCHsieCfCHsOH); CeHsCHO 

CeHs 

^ CeHs 

.CHaBr isoamyl 

CHgBr malonate 

COsH 

1)HC1,H20 
2)Scheme II 

^ CeHs 

HNOs 

CO2H 

COaCHa 

CO2CH3 

CH3OH 

HO2C 

HOgC 

CO2C5H1X 

O2C5H11 

CO2H 

CO2H 

\\^^C02CH3 

C02H 

Scheme II 

CO2CH3 

CO2CH3 

Scheme I 

O* 

"0 

Scheme I 

XXII XXIII 
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Figure 20. The first derivative esr spectra of two radicals, the stronger 
being bicyclo[3.1.1]heptane-2,3-semidione (XXIII) and the weaker 
being bicyclo[4.l.l]octane-3,4-semidione (XXII) in DMSO. 
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Figure 21. The first derivative esr spectrum of bicyclo[3.1.l]heptane-2 
semidione (XXIII) in DMSO. 
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0 

0* 

0 

XXII XXIII 

diester precurser of XXII was checked by glpc, a small im­

purity was present in an amount less than 1^, but with a re­

tention time identical to that of the diester precurser of 

XXIII. Repurifying of the diester by glpc and generation 

of the semidione gave the spectrum shown in Figure 22, This 

spectrum was identical to the spectrum of the "impurity" 

radical in Figure 20, and therefore is the correct spectrum 

of XXII. Semidione XXII was examined between +60° and -80°. 

Below 0° a mixture of 80̂  DMF and 20̂  DMSO was employed as 

the solvent. In this temperature range, the spectrum did 

not appreciably change, and it must be concluded from the 

equivalence of the various sets of protons (Chart IV) that 

the spectrum is the result of a very rapid ring inversion. 

A second radical was obtained from XXII whose identity 

is unknown. Upon exposure to oxygen, the signal due to XXII 

disappeared and another signal formed over a period of 4 hr. 

This new signal is shown in Figure 23 and analyzes for 

a^=4.85 (4H), 0.40 (4h), and 0.20 (2H). 

The same behavior is also exhibited by the 7,7-dimethyl 
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Figure 22. The first derivative esr spectrum of bicyclo[4.1.l]octane-- pectrum ^ 
5?4-semidione (XXIl) in DMSO. Only the first three parts 
of the large quintet are shown. 

s 



www.manaraa.com

52 

Chart IV 

CHs 

XXII XXIV 

.a^=8.40 (4H) HG_ 
0.67 (2H) Ĥ  
0.23 (4H) Ĥ ,Ĥ  

,a^=8.65 (4H) H a 

XXIII 

•a^=10.05 (2H) 

3.52 (2H) 

0.33 (IH) H^ or Hg 

0.18 (IH) H or H, e u 

CHs 

CHs 

XXV 

•a^=9.95 (IH) H^ or H^/ 

9.30 (IH) Hg_, or Hg_ 

3.90 (IH) H^ 

0.33 (5H) CHs, H^, Hg 
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Figure 23. The first derivative esr spectrum of 
from XXII on exposure to oxygen. 

the unknown radical formed 
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derivative of XXII, (XXIV) whose spectrum is shown in Figure 

CHa 

XXIVTd 

24. At first glance it would seem that XXIV should show some 

conformational preference. However, in each case, XXIVa and 

XXIVb, there is one axial methyl group and one equatorial 

methyl group. The spectrum, which was run in DME, is poorly 

resolved and shows only the major hfsc. Both XXIV and XXV 

(Figure 25) were prepared according to Scheme IX, in order to 

compare them to the parent systems. Semidione XXV had pre­

viously been prepared by Dr. Chang (12). In each case, the 

dimethyl substituted compound compares well with the parent 

semidione. 
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Figure 24. The first derivative esr spectrum of 7j7-dimethylbicyclo[4.1. 
octane-3,4-semldlone (XXIV) in DME. 
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Figure 25. The first derivative esr spectrum of 6,6-dimeth-
ylbicyclo[5.1.l]heptane-2,3-semidione (XXV) in 
DMSO. 
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LONG RANGE HYPERFINE SPLITTING CONSTANTS IN BI- AND POLYCYCLIC 
SEMIDIONES CONTAINING THE SEVEN-MEMBERED RING 

In the examples discussed so far, the y-hydrogen in the 

chair form of the seven-membered ring has had hfsc's ranging 

from 0.32 G in V to 1.12 G in XX. Other semidiones have been 

made where the y-hydrogen hfsc has been much larger: I.98 G 

in XXVI (15), 2.60 G in XXVII (12), and 2.70 G in XXVIII (14). 

The g-hydrogens of the chair form have shown different be -

H 

"o-

XXVI XXVII XXVIII 0 

havior. When the jS-hydrogen is a methylene hydrogen and has 

a trans-coplanar (zig-zag) arrangement of bonds to the îT-sys­

tem, the hfsc's have been in a fairly constant range, 1.8-

2.8 G. For example, the hfsc in the parent system, I-IV, 

have been I.85-2.I5 G*, in XVIII, 2.26 G*, in XIX, 2.26 G*, 

in XX, 2.75 G; and in XXVII, 2.34 G. 

Our attentions were first turned to the behavior of the 

y-hydrogen. Considering the series XVIII to XX to XXVI, a 

possible trend can be visualized. In going from XVIII to 

XX, the carbons in the zig-zag arrangement (bold line) have 
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H 
0 

XVIII XX XXVI 

been brought closer to being coplanar, mainly by the decrease 

in the C1-C5 distance, caused by decreasing the number of 

bridging carbons from three to two. Associated with this 

change in geometry is an increase in the y-hfsc from 0.7 to 

1.12 u. The coplanarity becomes even better in XXVI, where 

the C2-C4 distance has been lowered and the hfsc increases to 

1.98 G. If this is a true trend, another increase in the y-

hfsc would be expected if the C1-C5 distance in XXVI was again 

decreased, for example, by replacing the ethano bridge by a 

methano bridge. 

In reference to the synthesis of this compound, it has 

been reported that the Simmons-Smith reaction between nor-

bornadiene and methylene iodide gives only an exo addition 

product (48). When this reaction was run (Scheme X) two prod­

ucts, XXIXb and XXXb, were obtained in the ratio of 1:3 re­

spectively. The Diels-Alder reaction of cyclopentadiene and 

cyclopropene is reported (49) to give only endo-tricyclo-

[ 3.2.1.0^''^loct-ô-ene (XXIXb). Comparison of this product to 

the two products of the Simmons-Smith reaction establishes the 
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Scheme X 

A 7 

CHglg V 
Zn(Cu) 

XXIXb 

+ 

XXXb 

)KMn04 

b)CH30H,H+ 

3) Scheme I 

/l)KMn04 
2jCH30H,H+ 
3)Scheme I 

XXIX XXX 

=7.78 (IH) H^ 

1.37 (IH) Hg 

0.47 (IH) Hj or H^ 

0.15 (IH) Hg or H^ 
2.88 (2H) H^ 

0.34 (2H) H„ 

a^=7.6l (IH) % 

3.45 (IH) H^ 

1.05 (IH) H, 

0.20 (IH) Hg 

0.98 (2H) H^ 

0.40 (2H) H 

a 
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minor product as being the endo-addition product, and hence 

the other olefin ( XXXb ) must be the exo addition product. . 

Utilizing the Schemes already discussed, semidiones XXIX and 

XXX were generated (Figures 26 and 27). The assignments of 

splitting constants are shown and were confirmed by com­

parison with the values of bicyclo[2.2.1]heptane-2,5-semi-

diones (15). 

The largest splittings (7.78 and 7.61 G) in each semi-

dione are assigned to the 8-anti protons, and the 1.37 G 

(in XXIX) and I.05 G (in XXX) splittings are due to the 8-

syn protons. In both cases, these values are larger than the 

corresponding hfsc of bicyclo[2.2.1]heptane-2,5-semidione 

(15). This enhancement parallels that seen in the benzo-

bicyclo[2.2.1]heptane-2,5-semidione system (15). One very 

startling fact about these two systems is the great differ­

ence between the hfsc of With an endo-cyclopropane ring 

its value is slightly enhanced (2.88 vs. 2.49 G) over the 

parent system. However, with an exo-cyclopropane ring, the 

hfsc has greatly decreased until it is only O.98 G. Just 

why this happens is unknown, but it presumably involves a 

change in the molecular orbitals rather than a geometrical 

change in this part of the molecule (this will be discussed in 

more detail in the next section). The most noteworthy fact 

about XXX is that the y-hfsc, as predicted, has increased to 

3.45 G, larger than any previous y-splitting. 

We now sought to make a molecule in which the y-hfsc 
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Figure 26. The first derivative esr spectrum of endo-tricycloC^.g.l.O^;*], 
octane-637-semidione (XXIX^ in DMSO. 
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Figure 27. The first derivative ear spectrum of exo-tricyclo[3.2.1.0^^'^]-
octane-6,7-semidione (XXX) in DMSO. 
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would become even larger. Examining the relationship between 

XX, with a y-hfsc of 1.12 G, and XXVII, with a y-hfsc of 

2.60 G, the change in the hfsc seemed larger than would be 

expected by the zig-zag carbons simply becoming more coplanar 

An increase in the y-hfsc by a factor of 2.5 occurred here 

whereas in going from XXVI to XXX, the increase was by a fac­

tor of 1.7, in going from XX to XXVI the factor was 1.8, and 

in going from XVIII to XX the factor was 1.6. In considering 

the structures of XX and XXVII, not one but two geometrical 

changes have been made. In addition to becoming more co-

planar, the bond angles made by the zig-zag carbons have 

decreased, i.e. the zig-zag has become, so to speak, "sharper 

To ascertain if this second change was having any real 

effect on the y-hfsc, semidione XXXI was prepared. If the 

.0" 0-

0 0 XXVII XXXI XXX 

splitting depended only on coplanarity, the y-hfsc of XXXI 

would be about the same as that of XXX. This would represent 

an increase over that of XXVII by a factor of only 1.5. If 

both coplanarity and the bond angles were Important, the y-

hfsc of XXXI would be larger than that of XXX and would be 

larger than that of XXVII, by a factor of 1.6-1.8, based on 
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our other models. 

The syntheses of XXXI and the trimethyl derivatives 

XXXII and XXXIII are shown in Scheme XI, This route also al­

lowed the preparation of semidiones XXXIV., XXXV, and XXXVI, 

which definitely establish the assignment of splitting of the 

y-hfsc in the seven-membered ring chair form. The spectra of 

these semidiones are shown in Figures 28 to 55 and their anal­

yses and assignments are in Charts V and VI. 

The most striking feature in the spectrum of XXXI, Fig­

ure 28, is the large doublet splitting of 4.8l G. This hfsc 

is larger than the y-hfsc in XXVII by the predicted factor 

of 1.8, and since it is also larger than the y-hfsc of XXX, 

it confirms the hypothesis that the magnitude of this split­

ting depends not only on the coplanarity of the zig-zag sys­

tem, but also on the bond angles between these carbons, 

namely, the smaller the angles, the larger the splitting 

constant. 

The synthetic route (SchemeXI) also gave the two tri­

methyl derivatives of this system. A definite assignment of 

the methyl positions in these isomers, comes from the nmr 

spectra of the two tricyclic isomers. In the parent system, 

the C4 proton is centered at 6 2.58 ppm and the three cyclo-

propyl protons are in the range of 1.6-1.15 ppm. The one 

trimethyl isomer, which was obtained pure, showed three pro­

tons in the range of I.65-I.O ppm. These must be the three 

cyclopropyl protons and hence the isomer is the 4,7,7-tri-
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Scheme XI 

l) Na,2 CO3 
2)Pb(0Ac). 

XXXIV 
XXXV 
XXXVI 

Scheme I 

XXXI 
XXXII 

XXXIII 

XXXII, XXXV Ri=R2=CH3, R3=H 

XXXIII, XXXVI Ri=R3=CH3, R2=H 

XXXI, XXXIV Ri=R2=R3=H 
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Figure 28, The first derivative esr spectrum of tetracyclo 
[4.2.0.02'4 o3,7]nonane-8,9-semidione fXXXll in 
DMSO, 
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lAL 

Figure 29. The first derivative esr spectrum of 5,5,6-tri-
methyltet racycloE 4.3.0. 0^  ̂ ̂ nonane-8,9-
semidione (XXXII') in DMSO. 
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Figure 30. The first derivative esr spectrum of 4,5,5-tri-
methyltetracycloC^ .3.0.0^nonane-8,9-
semidione (XXXIII^ in DM80. 
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Figure 31. The first derivative esr spectrum of pentacyclo[5.4.0.0^'^.0"^ 
^09jii]undecane-3^4-semidione fXXXIVl in DMSO, 
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Figure 32. The first derivative esr spectrum of 7,8,8-tri-
methylpentacycloC = 0®'^^]undec-
ane-Ja^-semidione (XXXV) in DM80. 
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Figure 33. The first derivative esr spectrum of 8,8,9-trimethylpentacyclo-
[5.4.0.0 " .0';IO.09;ii]undecane-3,4-8emldlone fXXXVI^ In DMSO. 
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Chart V 

XXXI 

CHs CHs 

XXXII 

I CO
 

H
 

(IH) % 
1.33 (2H) Hb 
0.48 (2H) He 
0.21 (2H) He 

•a^=3.74 (IH) Hg 

1.20 (2H) H^ 

0.50 (2H) H^ 

0.07 (^3H) CHs 

CHs CHs 

XXXIII 

a%=1.29 (2H) H^ 

0.46 (2H) H^ 

0.09 (^3H) CHs's 
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0.37 (2H) H^ 

CHs CHs 

H 

XXXV 

a =10.9 (2H) Hg_ 

0.40 (2H) H^ 
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a^=10.8 (2H) Hg_ 

0.39 (2H) H^ 

0.16 (2H) H^ 
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methyl derivative. The other isomer obtained from the mix­

ture showed two protons about 1.38 ppm and another proton 

at 2.18 ppm. The two higher field protons are the cyclo-

propyl protons and the other is the C4 proton which has been 

shifted 0.4 ppm upfield (compared to the unsubstituted sys­

tem) by shielding due to the 7,7-dimethyls. This isomer must 

then be the 1,7,7-trimethyl derivative. With this assignment 

being definite, the assignment of structure to all the other 

previous isomers in the synthetic route is now complete. 

The spectra of XXX, XXXI, XXXII, and XXXIII allow the 

complete assignment of all hfsc in this system. The large 

triplet splitting, 0,98 G in XXX and 1.20-1.35 G in XXXI 

through XXXIII, is assigned to the a-protons. The 0.40-0.50 

triplet splittings in these four semidiones is assigned to the 

endo cyclopropyl protons, The additional triplet split­

ting (0.20 G) in XXXI is due to the protons. Both the 

splitting and these protons are absent in XXXII and XXXIII. 

Semidione XXXIV was originally prepared by Whittle (l4). 

Figure 31 shows that the fine structure, originally inter­

preted as a doublet of triplets, is a triplet of triplets. 

The absence of the smaller triplet in the spectra of XXXV and 

XXXVI assigns this splitting to protons in XXXIV. The 

0.4 G triplet is presumably due to protons and the large 

triplet must be due to the a-protons H . In these three 

semidiones, the absence of any doublet splitting confirms 

the assignment of the doublet splitting in the chair form of 
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the seven-membered ring to the y-equatorial protons. 

We next turned our attention toward the cyclopropyl de­

rivatives of the tiicyclo[2.2.2]octane-2,3-semidione system. 

As demonstrated in the bicyclo[2.2.1]heptane system by semi-

diones XXIX and XXX, the effect of an exo cyclopropyl group 

on the bridgehead proton is quite large, whereas the endo 

group had little effect. The preparation of semidiones XXXVTI 

(as shown below) XXXVIII, XXXIX and XL (as shown in Scheme XII) 

would allow the examination of this effect on a bridgehead 

proton, which in the parent system is in the nodal plane of 

the TT-system. The spectra are shown in Figures ^4 through 

39 and the analyses are shown in Chart VII. Semidione XXXVII 

showed splitting from eight of its ten hydrogens. The large 

triplet is assigned to protons by analogy to the parent 

bicyclo[2.2.2]octane-2,3-semidione. The two doublets must 

be due to protons and . The two small triplets are 

assigned to protons and . This was confirmed by substi­

tution of deuterium into the bridgehead position by exchanging 

1)KMn04 
2)CH30H,H" 

A 

XXXVII 
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Figure 3^. The first derivative esr spectrum of endo-tricyclo[3.2.2.0^^'^] 
nonane-6,7-semidione (XXXVII^ in DMSO. 
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Figure 35. The first derivative esr spectra of endo-tri-
cyclo[3.2.2.0^^'^]nonane-6j7-seniidione (XXXVII^ 
in DM80; A) the diesters were equilibrated in 
basic methanol, the diesters were equilibra­
ted and the a-protons exchanged in methanol-d. 
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Figure 36. The first derivative esr spectrum of endo,endo-8j9-dlmethyl-
endo-tricyclo[3.2 .2.0^ ̂"^Inonane-S^Y-semldione (XXXVIII) in DM80. 
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Figure 37. The first derivative esr spectrum of endo,endo-
tetracyclo[3«2.2. 0^^'^. 0®^®]decane-9,10-semidione 
(XL) in DM80. 
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Figure 38. The first derivative esr spectrum of exo,endo-tetracyclo-
[3.2.2.02)4 .o'^^®]decane-9,10-semidione (XXXIX) in DMSO. 
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Figure 59. The first derivative esr spectrum of XXXIX in DMSO after the ol-
protons had been replaced with deuteriums. 
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Chart VII 

XXXVII 

a^=2.32 (2H) 

0.21 (2H) Hg or 

0.13 (2H) or Hg 

0.51 (IH) Hj or Hg 

0.39 (IH) Hg or Ha 

XXXIX 

0.37 (2H) H^ or H^ 

1.78 (IH) H^ 

0.66 (IH) H^ or Hg 

0.39 (IH) H^ or H^ 

0.15 (IH) Hg 

XXXVIII 

a^=1.52 (2H) H^ 

0.44 (2H) H^, Hg 

a^=0.76 (2H) H, or H 

0.38 (2H) Hg or H^ 
0.06 (4H) H^ 
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the &-hydrogens of the diester precursor. Although the 

spectrum of the deuterated material (Figure 55 B) appears to 

be greatly different from that of the undeuterated material 

(Figure the analyses of the spectra give splitting con­

stants within 0.02 G. Furthermore, when the diester was 

equilibrated in methanol, rather than methanol-d, the crude 

product gave Figure 55 A, essentially identical to 55 B. The 

change in the appearance of the spectra is attributed to the 

presence of impurities, mainly the trans diester, in the 

equilibrated material. 

The corresponding olefins of XXXVIII and XL are both 

extremely resistant to oxidation. Neither are affected by 

potassium permanganate in refluxing acetone or water. Con­

sequently another method of generation of the semidiones was 

sought. Benzoyl nitrite added readily to the hindered double 

bond, even at room temperature, and the adduct could be hy-

drolyzed by wet alumina to the benzoic acid esters of the 

a-hydroxy ketones. In situ hydrolysis of the esters with 

potassium t-butoxide in DMSO, generated the corresponding 

semidiones. Semidione XXXVIII had been generated previously 

by Holland (15) from the ketone, and thus the method is estab­

lished as working. Although they are not resolved, fine 

splittings in the spectrum of XXXVIII are present as indi­

cated by the broadness of the lines in the spectrum (Figure 

56). Assignment of the large splittings was made by com­

parison to semidione XXXVII. 
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Semidione XL gave the spectrum shown in Figure 37. Two 

triplets of O.76 and 0.38 G are present and these must be 

assigned to protons and A smaller quintet splitting 

of 0.06 G is barely discernable and must be assigned to the 

2V zig-zag protons This dramatic decrease in the hfsc 

of 2V protons, when they become cyclopropyl methine protons, 

had been previously noted in semidione XXIX, in the bicyclo-

[2.2.1]heptane system. 

Semidione XXXIX was prepared to determine the effect of 

the cyclopropyl ring, which faces away from the TT-system, on 

the bridgehead protons. The spectrum is shown in Figure 58. 

In Figure 39, the spectrum of XXXIX, after the bridgehead pro­

tons had been replaced with deuterium, is shown. As was the 

case with semidione XXX, the cyclopropane ring has had a 

large effect on the splittings of the bridgehead protons. In 

fact, the largest triplet splitting, 0.57 G, must be assigned 

to the bridgehead protons, as evidenced by the lack of this 

splitting in the deuterated molecule. As with XXX, this 

change is partly attributed to an effect on the molecular 

orbitals of the system rather than to a geometrical change. 

That such an effect, by a remote group in the molecule, on 

the hfsc of protons nearer to the TT-system, does occur is 

indeed surprising. It is thus very gratifying that, to a 

certain extent, this effect is predicted by Extended Huckel 

calculations (see next section). 

A few more semidiones remain which are pertinent to the 
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discussion of these systems. The parent seven-memhered ring 

systems, to which these polycyclic semidiones compare^ are XLI 

(for XXIX to XXXIII, and XXXVII to XL), and XLII (for XXXIV to 

XXXVI). The syntheses of XLI and XLII are shown in Schemes 

XLI XLII 

a 13.3 (2H) a^=12.8 (2H) H 
6.00 (2H) K & 
0.22 (2H) H 0.62 (2H) or 

0.50 (IH) H. or H 0.30 (IH) or 

0.09 (IH) Hg or 0.06 (2H) 

XIII and XIV respectively, and their spectra in Figures 40 

and 41 respectively. Although they both have been drawn in 

the chair conformation, the boat conformation is possible 

for XLI, and the probable conformation XLII is one which is 

intermediate between the chair and boat, namely one with the 

five-membered ring nearly planar. 

Semidione XLI displays two large triplets which are as­

signed to the CK-hydrogens. The small triplet must then be 

due to the cyclopropyl methine hydrogens. The doublet hfsc 

of 0.50 G is unique in that it is too small, when compared to 

predicted values, for the chair conformation. Basing the 

prediction on cycloheptanesemidione, an increase by the factor 
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Scheme XIII 

KMQO 
KOt-Bu 

COpH 
COoH 

CHaOH.H'' 
2)Scheme I 

XLI 

Scheme XIV 

Q 
Ji. OOaEt Br.  ̂-COeEt 

Brs 

O' 
NaOEt 

CO2H 

:H 

CO2H 

CHsCOCl 
140° 

1)CH30H,H+ 
2) Scheme I 

XLII 
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Figure 4o. The first derivative esr spectrum of blcyclo[4.1.0]heptane-3,4-
semldione (XLI^ in DMSO. 
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Figure 4l. The first derivative esr spectrum of bicyclo[3.2.0]heptane-6j7-
semidione (XLII) in DMSO. 
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of —1.7 would be expected, yielding a hfsc of ~0.92 G. If 

the prediction was instead based on going from XXVI to XLI, 

a decrease by a factor of 2.08 (compare XX to l), would give 

a predicted value of 0.95 G, agreeing well with the other 

predicted hfsc. In each case, the actual value of the hfsc 

is too small by a factor of almost 2. However, the hfsc of 

the y-hydrogen is in the range of hfsc for boat conformations 

of the seven-membered ring. 

The hfsc of y-hydrogens for the boat form have been in 

the range of 0.45-0.76 G, for the semidiones already dis­

cussed. Two more semidiones were prepared in which the boat 

conformation of the seven-membered ring is the most likely 

one. These semidiones are XLIII and XLIV. XLIII had been 

XLIV 

H, 0 '  

0 

'd '̂ e a 

a^=5.58 (2H) Hg a^=9.85 (2H) 

2.50 (2H) 

0.55 (IH) 

4.00 (IH) 

1.09 (IH) 

0.51 (3H) H^, Ha 

0.20 (IH) Hg 
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previously prepared by Chang (12) and the spectrum is shown 

in Figure 42. However, better resolution was obtained in 

this case, and a new analysis of the spectrum was necessary. 

The most likely conformation of XLIII is as shown with the 

seven-membered ring being in the boat conformation. The 

assignment of conformation is based on two points. First, 

the characteristic 2 G hfsc from the #-position of a chair 

is not present, and second, a doublet hfsc of the correct 

magnitude for the chair form, is not present. The y-hfsc 

for a chair would be 1.9-2.0 G based on going from XX to 

XLIII or from XXX to XLIII. Semidione XLIV, whose spectrum 

is in Figure 43, is simply the dimethyl derivative of IX. 

An impurity in. .the spectrum adds additional lines to the 

center of the large triplet. The 0.55 G y-hfsc again agrees 

with the structure of the seven-membered ring being a boat 

rather than a chair (see IX). 
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Figure 42. The first derivative esr spectrum of bicyclo[3.2.1]octane-6,7-
semidione (XLIIIl in DMSO. 
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Figure 43. The first derivative esr spectrum of exo,exo-7,8-dimethylbl-
cycloC4.2.l]nonane-3,4-semldlone (XLIVl in DM80. 
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EXTENDED HUGKEL CALCULATIONS 

Theory 

The molecular orbitals, i|i^, of the system are formed as 

linear combinations of the atomic orbitals, which are nor-

•u = ̂  ̂ ul^ul (1) 

malized (50) according to equation 2, and are orthogonal to 

the other orbitals on the same atom. The group overlap inte-. 

grals are represented by S. .. The overlap matrix is calculated 
V 

by the method of Hoffmann and Lipscomb (51) using a basis set 

of Slater type orbitals (equation 5)» where N is the normali-

(n,l,m,z) = Nr^"^exp(-zr)Yi*(e,€) (5) 

zation factor, n, 1, and m are quantum numbers, z is the orbi­

tal exponent, Yi the spherical harmonic, and r, 0, and e the 

respective polar coordinates. The orbital exponents used for 

the calculations were essentially those obtained by Cusachs 

(52) using the relation in equation 4, where values of <r> have 

z = ̂ YrT^ (4) 

been calculated from the many-term SCF functions (53-56). 

While it is impossible to adequately reproduce all the pro­

perties of a SCF function with a Slater type orbital, it is 

still possible to represent one property accurately using a 
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single Slater type orbital. In the case of overlap, Cusachs 

finds that the calculated orbital exponents using (r> do close­

ly reproduce the overlap optimized values. These orbital ex­

ponents were not corrected for charge since when charge trans­

fer does occur, the charged neighbor atoms exert an electro­

static potential which tend to cancel the charge transfer ef­

fects (52). 

The diagonal elements of the Hamiltonian matrix, or 

coulomb integrals, were calculated using equation 5, according 

= «11° - AO. - (5) 

to the method of Cusachs (57), where is the valence state 

ionization potential (VSIP), AQ^ is the charge transfer cor-
* 

rection term, and is the neighbor atom potential cor­

rection term. A and B are constants, different for different 

elements, is the net charge on atom i, and is the neigh­

bor atom "effective charge" term. The calculations were per­

mitted to run to charge self-consistency, usually to within 

0.02 units. 

To obtain convergence of the charges in the least number 

of iterations, a damping factor D had to be included. All 

changes in the net charges of the atoms and the neighbor atom 

"effective charge" term were damped using equations 6 and 7, 

Q-d) (6) 
1 + D 
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= (D - 0.5)Qb*(l) + 

^ 0.5 + D 

where I corresponds to the input and II refers to the output 

of the calculations. The new and were then used for 

the next iteration. The values of D were generally in the 

range of 2.5 to 3.0, and six to eight iterations were general­

ly required for convergence. 

The off diagonal elements, H. ., were obtained from the 

overlap matrix by a modification of Cusachs formula (58) and 

is shown in equation 8, where S. . the group overlap inte-

H i a  =  ( 2 -  ̂ i j l ( 8 )  

grals and jS. .] are the atomic overlap integrals. The calcu-Ij 

lation of the 8. .(2 - fS. .| ) terms is done in the local coor-
i j  i j  

dinate system prior to rotation to the molecular coordinate 

system. The use of the geometric mean of H.. and H.. is the 
n  j  j  

modification that Ballhausen and Gray (59) applied to the 

¥olfsberg-Helmholz formula (60). 

Since the terms chosen in this program were designed to 

closely match the overlap integrals, without regard for pre­

dicting other properties, such as those depending on the shape 

of the orbital near the nucleus, it was felt that the proton 

hyperfine splitting constants could best be predicted using 

the coefficients of the hydrogen Is atomic orbitals in the 

molecular orbital containing the unpaired electron. When con­

sidering just the first order Fermi contact term, the hyper-
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fine splitting constants are given by equation 9. Evaluation 

aH. - (g) 

of this expression gives a^ = 878 c^^ G. The scaling factor 

used in this work was a^ = 790 c^^ G, where the major differ­

ence is due to the normalization factor chosen. In most cases, 

ECui^ was approximately equal to 1.11, and hence a reduction of 

10^ in the scaling factor was used. While approximating the 

normalization of Zc^^^ = 1, this factor kept the relative 

differences in normalization between molecules caused by in­

clusion of the overlap term. In Table 2 are listed the vari­

ous input parameters used in the calculations. 

Table 2. Input parameters used in the Extended Huckel Calcu­
lations . 

Orbital VSIP A B z n 

=23 -19.5 11.9 14.7 1.57 2 

-11.2 11.9 14.7 1.46 2 

0
 

ro
 

CO
 -22.2 15.2 18.8 2.19, 2 

°2P -16.1 15.2 1 8 . 8  2.03 2 

^4s - 4.5 4.0 2.1 0.67 3 

- 2.7 4.0 2.1 0.44 3 

%s -13.6 0 . 0  0.0 1 . 2 0  1 
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Geometrical Considerations 

Although a number of precise structural studies have been 

made on several bicyclic systems (61-6?), there is little or 

no data available for semidiones or even the structurally close 

diketone systems. The importance of the calculations depends 

on the ability to predict hyperfine splitting constants with 

reasonable accuracy, and without the necessity of an exact 

structural study. 

In general, the structures were constructed using the fol­

lowing rules: saturated C-C bond lengths are 1.541, the OC-CO 

bond lengths are 1.40Â (the calculated bond order for this bond 

is 0.40, and a decrease in the diketone bond by 0.07Â was made 

using the published bond-order bond-length relationship (68) of 

Streitwieser), 0=0 bond lengths are 1.22Â, O-H bond lengths are 

I.09Â, for methine hydrogens all H-C-C bond angles are equal, 

for methylene hydrogens all H-C-C bond angles are equal and the 

H-C-H bond angles are 111°, for methyl groups all H-C-C bond 

angles are equal and all H-C-H bond angles are 109.5°, when a 

hydrogen was replaced by a methyl group all angles remain un­

changed, the angle between the two carbonyl bonds was 70° (var­

iation of this angle had little effect on the calculations), 

and the internal angles for the ring systems were chosen to try 

to minimize distortion. Where structural analogies were a-

vailable in the literature, such as for the bicyclo[2.2.1]hep-

tane system, the necessary modifications were made to convert 

the structure to one containing the semidione functional group. 
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The geometries were then varied to observe how the predicted 

hyperfine splitting constants changed. 

Results 

Butane-2 ,3-semidlone 

This seemingly simple system was used to test the appli­

cability of our method of calculating proton hyperfine split­

ting constants (hfsc). This system also offers complexity be­

cause of rotational conformers of the methyl groups, cis and 

trans isomerization, and distortion due to twisting of the cen­

tral carbon-carbon bond. In the past, it has been difficult 

to obtain reasonable agreement between the experimental and 

calculated results for this system (lO). The geometries used 

in the calculations are shown in Figure 44, and the results 

are given in Table 5. When structure A. was used, the calcula­

ted hfsc for the cis isomer was 5.75 G, and the hfsc for the 

trans isomer was 6.17 G. Varying bond angles, changing the 

rotational conformation of the methyl group, or using a struc­

ture with a slight twist about the Cg-Cs bond had little ef­

fect on the calculated values. In all these cases, for simi-

liar structures, the trans hfsc was predicted to be larger 

than that of the cis, whereas the reverse is true experimental­

ly. 

Previous experimental work suggested the possibility of 

the potassium ion being chelated with the bidentate cis-semi-

dione group. When the potassium was included in the calcula­

tions for the cis isomer, a large increase resulted in the pre-
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0 "  0  

Figure 44. Two of the structures used in the calculations 
for the cis-isomer of butane-2j3-semidione. 
For the trans-isomer, a l80° rotation about 
the carbon-carbon double bond was executed. 
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Table 3. Observed and calculated splitting constants for 
butane-2,5-semidione. 

Structure cis trans 

Obsd.& 7.0̂  5.6^ 

No K 

Calcd. A 5.75 6.17 

Calcd. B 5.78 

With K s and p 

Calcd. A 1.8& 9.50 

Calcd. A 2.2Â 8.80 

Calcd. A 2Ak  8.42 

With K s 

Calcd. A 2.4Â 8.24 

Calcd. B 2.4Â 8.04 

With Na s 

Calcd. A 2.I5Â 8.75 

With K s 

Calcd. A^ 3.OA 7.59 

^In DM80. 

^Potassium as the gegenion. 

^Distance from one oxygen in a line parallel to the 

C2-C3 bond. 
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dieted hfsc. Including the p-orbitals of the potassium ion 

had little effect on this value, which was now greater than 

the predicted hfsc for the trans isomer. Another interesting 

experimental fact has been observed. In weakly ionizing sol­

vents such as dimethoxyethane, the splitting constants are 

larger than those observed when solvents with a greater ioni­

zing ability, such as dimethylsulfoxide, are used (69). In a 

solvent such as DME, the potassium-oxygen bond distance would 

be expected to be shorter than the bond length in DM80. When 

the potassium-oxygen bond length was varied in the calculations, 

the predicted hfsc was greater for the structure with the 

shorter bond distance. This trend is in excellent agreement 

with the experimental facts. 

Another experimental fact which has been noted, is that 

the hfsc increases when the gegenion is changed from potas­

sium to sodium to lithium. Using sodium as the gegenion in 

the calculations also predicts a slight increase in the hfsc. 

Bicyclof 3.1.Qlhexane-2,3-semidione 

The geometry and numbering for this system is shown in 

Figure 45. The five-membered ring was assumed to be planar, 

with the two oxygens in the plane of the ring. The internal 

angles of the ring are as shown, and two angles, 105° and 108°, 

between the planes of the three- and five-membered rings were 

used for the calculations. In the methyl substituted com­

pounds it was assumed that the carbon of the methyl group makes 

the same bond angles as the hydrogen which it has replaced. 
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syn 

endo 

I'*' exo 

106 
107 

106° 

Figure 4$. The geometry and numbering for anti-6-methylbi-
cyclo[3.1.Ojhexane-2,3-semidione. Structure A has 
an angle of 108° between the planes of the three-
and five-membered rings, and Structure B has an 
angle of 105°. The rotational conformer of the 
methyl group is as shown. 
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In most cases only one rotational conformer of the methyl 

group was considered. However, in the cases where more than 

one rotamer was considered, the predicted hfsc underwent 

little change. 

In the unsubstituted case, good agreement with the exper­

imental values was obtained for each case, and possibly bet­

ter agreement would have resulted for a model whose structure 

was between the two considered. The fact that the ratio of 

H H 
^exo ^endo closer to the experimentally observed 

value is presumably due to the assumption of planarity for the 

five-membered ring. However it is still interesting to note 

that the assumption of planarity does lead to the prediction 

of a marked difference between the exo- and endo-hydrogens in 

the correct direction, even though in our model the dihedral 

angles of these hydrogens with respect to the p-orbital of the 

adjacent TT-system carbon are equal. This demonstrates that 

the application of the Heller-McConne11 equation (70) to cal­

culate dihedral angles in unsymmetrical molecules may be in­

valid. 

The observed (13) and calculated values for this system 

are shown in Table 4. In all cases good agreement with the ex­

perimental values was obtained. The predicted hfsc are in the 

correct order, but their absolute values are too large. Two 

possible sources of error are present in the calculations of 

the methyl substituted compounds. The assumption that the 

methyl group makes the same bond angles as the hydrogen it re-
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Table 4. Observed and calculated splitting constants for 
blcycloC 3.1.0] hexaJie-2,3-semidiones. 

Hydrogen 1 4-exo 4-endo 5 6-anti 6-syn 

Unsubstituted 

Obsd. 4.0 14.9 7.86 0.8 4.0 0.8 

Calcd. A 4.27 13.91 9.79 0.67 3.54 0.49 

Calcd. B 3.41 13.64 9.91 0.71 4.30 0.89 

anti-6-methyl 

Obsd. 4.3 14.3 7.6 0.9 0.4% 0.9 

Calcd. A 3.78 14.25 10.30 0.77 0.99b 0.59 

Calcd. cc 3.51 13.97 10.09 0.66 1.09b 0.56 

syn-6-methyl 

Obsd. 4.6 14.3 7.4 1.1 1.5 <0.1* 

Calcd. A 4.87 12.72 9.28 0.58 0.40 0.24b 

6,6-dimethyl 

Obsd. 5.1 14.6 7.6 0.9 0.45®" 0.0* 

Calcd. A 4.38 12.98 9.61 0.64 1.16^ 0.23b 

8L ÎÎ three equivalent hydrogens observed. 

^Average value for one rotamer only. 

^Structure C is the same as structure A with the excep­

tion that the methyl group has been rotated 6o°. 
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places is probably the largest source. Secondly, the possi­

bility of distortion introduced into the rest of the molecule 

was not included in calculation of structures. 

Bicyclof 2.2.l]heptane-2,^-semidione 

The experimental (15) and calculated results for this 

system are shown in Table 5. Two geometries were used for the 

calculation and these are given in Figure 46. Fairly good 

agreement between experimental and calculated values was ob­

tained. A.s can be seen, a large variation in the predicted 

hfsc occurs when the geometry is changed. In fact, the cal­

culations for this system were more sensitive to geometrical 

changes than any other system that we used. The largest dif­

ference between the predicted and observed splittings were for 

the a-hydrogens. All the other differences could have been 

corrected by a change in geometry, but the hfsc of the a-hydro-

gens remained fairly constant. 

Two facts stemming from the calculations are interesting 

to note. First of all, in the syn-7-methyl compound, a large 

decrease in the splitting of the anti-7-hydrogen is predicted. 

Qualitatively this agrees with the experimental facts, although 

quantitatively the prediction is too large. This parallels the 

case of the anti-6-hydrogen in s^n-6-methylbicyclo[3.1.0]hex-

ane-2,5-semidione. As in previous calculations, only one struc­

ture was used for the calculation on the methyl substituted 

compounds, and the possible sources of error remain the same. 

A second interesting point is that the anti-7-methyl splitting 
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H 

exo 

endo 

Figure 46. The geometry and numbering for syn-7-methylbi-
cyclo[2.2.1]heptane-2^3-semidione. The distance 
from Ci to C4 is 2.25A. Structure A had ^.^=110° 
and Z.^g=125°. Structure B has Z.^^,=ll4° arm 



www.manaraa.com

109 

Table 5- Observed emd calculated splitting constants for 
bicycloE?.2.l]heptane-P,3-semldione. 

Position 1/4^ 5,6-exo 5,6-endo 7-anti 7-syn 

Unsubstituted' 

Obsd. 2.49 2.49 0. 0 6.47 0.41 

Calcd. A 1.41 2.67 0. 60 5 28 0.22 

Calcd, B 1.71 1.65 0. 22 7.30 0.59 

anti-7-methyl 

Obsd. P. 37 2.37 0. 09 0.19* 0.49 

Calcd. B 1.94 1.67 0. 24 0.05^ 0.66 

syn-7-methyl 

Obsd. 2.52 2.52 0. 0 3.11 0.18* 

Calcd. B 1.39 1.62 0. 30 1.66 0.44^ 

three eauivalent hydrogens observed. 

^Average value for one conformation only. 

is calculated to be less than the syn-7-methyl splitting. This 

is in agreement with experiment, and it is especially noteworthy 

when one also considers that in the bicycloC 1. o]hexane -P. j<-

semidione system, just the opposite is true, namely the experi­

mental and calculated values for the anti-6-methyl are larger 

than the values for the syn-6-methyl. Just why this is so. is 

still somewhat vague, but since the Extended Huckel method 

takes into account through space (and through bond^ overlaps 
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Table 6. Observed and calculated splitting constants for 
tricyclo[ 5.2.1.0^ '"^1 octane -6,7-semidione. 

Position 1(5) 8a 8s 3a 3s 1 
1 

1 
^ •exo 2 ,4-endo 

Exo-

Obsd. 0.98 7.61 1.05 3.45 0.20 - -' — — 0.40 

Calcd. A 0.62 5.18 0.32 3.09 0.15 - - 0.01 

Calcd. B 1.04 7.54 0.85 2.97 0.35 - - 0.03 

Endo-

Obsd. 2.88 7.78 1.37 0.47 or 0.15 0. 34 —  —  — —  

Calcd. A 2.16 6.08 0.73 1.55 1.24 0. 66 

Calcd. B 2.25 8.06 1.06 0.74 0.56 0. 

0
0
 

rather than spin polarization type coupling mechanisms, the 

solution would then seem to lie in that direction. 

Exo- and endo-tricyclo[5.2.1.0^ *'^loctane-6,7-semidione 

The geometry and numbering for these compounds is shown 

in Figure 4-7. The structure of bicyclo[2.2.1]heptane-2,3-

semidione was used to form the basic geometry with the addition 

of a cyclopropyl ring. The angle between plane D of the cyclo-

propyl ring and plane C in the molecule was taken to be 117° 

(62). The results of the calculations are shown in Table 6. 

In each case, structure B gave excellent results. Some very 

interesting qualitative results can also be noted. When com­

paring the bicyclooctane system to the bicycloheptane system, 

the positions of the hydrogens a to the semidione group has 
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Exo-endo 

aa 

gxo 

Endo-

•3 s 

Figure 47. The geometry and numbering for exo- and.endo-tri-
cyclo[ 5.2.1. 0^''^joctane-6 ,7-semidione. The dis-
from Ci to Cg is 2.25A. Structure A has 6.^=110° 
and Z.^g=125°. Structure B has Z.^^,=ll4° and 

122°. 6co=117°. 
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not changed, and yet a large change in the hfsc is predicted 

in each case. For the exo-compound a large decrease in the 

hfsc of the a-hydrogens is predicted and in the endo-compound 

a large increase is predicted. Both of these trends are in 

excellent agreement with the experimental results. In addi­

tion, a large decrease in the hfsc of the 2,4-exo hydrogens of 

the endo-compound is also predicted and this too agrees with 

the experimental results. 

One other fact is also interesting to note. In the exo-

compound, the calculated splittings of the cyclopropyl methyl­

ene hydrogens is relatively insensitive to the structural 

change from A to B. However, for the endo-compound, the re­

verse is true. This is explained by the fact that in the 

endo-compound, this group is quite close to the TT-system in 

which the unpaired electron mainly resides. A small change in 

geometry would therefore cause a large change in the atomic 

orbital overlap between these two parts, and would therefore 

cause a large change in the predicted splittings. Because of 

this, it is gratifying to note that the predicted splitting 

constants for the 3-syn- and the 3-anti-hydrogens in this case, 

did come as close as they did to the experimental values. 

Cycloheptanesemidione 

The geometries of the chair and boat conformations of 

this system are given in Figure 48 and the results of the 

calculations are given in Table 7. The dihedral angles of the 

a-hydrogens, used in forming stractrues B and C were those 



www.manaraa.com

115 

Figure 48. The geometry of the chair and boat conformations 
of cycloheptanesemidlone. Three structures were 
11 G p 

^23 4 Z.345 ^456 dihedral L of cl H 

Structure A 109° 109° 109° 71° and 11° 
Structure B 111° 111° 107° 79° and 19° 
Structure C 111° 111° 110° 89° and 39° . 



www.manaraa.com

114 

Table 7, Observed and calculated splitting constants for 
cycloheptanesemidione. 

Hydrogen 
%«' «g H^/ "y «y' 

Obsd. 6.60 0.28 2.05 0.28 0.0 0.56 

Calcd. 7.26 0.93 2.15 0.24 0.29 1.37 

Calcd. As 7.23 2.09 1.97 0.01 5.07 4.20 

Calcd. Bi 8.21 0.43 1.90 0.27 0.12 1.26 

Calcd. Ba 9.56 1.10 1.24 0.17 2.47 2.21 

Calcd. Gi 6.15 0.60 2.60 0.83 0.00 1.90 

Calcd. Ca 9.18 0.25 0.22 0.09 0.92 1.51 

Different letters refer to calculations using different 
angles and the subscripts 1 and 2 refer to the chair and boat 
conformations respectively. 

obtained by solution of the Heller-McConne11 equation. In ad­

dition, the dihedral angles of B are those obtained for cyclo-

heptene using amr spectroscopy (31). After choosing the di­

hedral angles of these hydrogens, the overall structure was 

then formed by choosing Internal bond angles which were dis­

torted only slightly from the usual values. 

In each case, the splitting constants calculated for the 

chair conformation were in better agreement with the experi­

mental results. The main difference between the experimental 

and calculated values occurs in the y-position, and the proba­

ble cause of this is due to the inadequacies of calculating 

the true geometry of this system. However, one of the main 
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advantages of our calculations has been the ability to pre­

dict hyperfine splitting constants in reasonable agreement 

with the experimental facts, even though an exact geometry 

for the system was not available. 

Bicyclofg.1.llhexane-2,3-semidione 

The geometry and numbering of this compound is shown in 

Figure 49. Wilcox (71) calculated the geometry for the bicy-

clo[2.1.1]hexene system using two different methods. In one 

case an angle L was calculated to be 159° on the basis of 

angle strain, and in the other case it was calculated to be 

157° on the basis of nonbonded repulsions. In our calcula­

tions we used angles of 156° and l40°, while making the ne­

cessary modifications to convert the geometry of the alkene 

to that of the semidione. The results of the calculation 

are shown in Table 8. 

The system was an interesting one to use for the cal­

culation in that it has the largest 2V splitting constant 

yet observed (l4). The results of the calculation agree 

well with the experimental values, and possibly better agree­

ment could have been obtained using a value of L of about 

154°. The predicted hyperfine splitting constant for 

was the largest predicted 2V splitting constant in all of our 

calculations. For Hi(4) the predicted hfsc was 0.00 in the 

structures tried. These two hydrogens lie in the nodal plane 

of the TT-system, and since the molecule is symmetrical about 

this plane, the predicted value of all cases would be zero. 
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Hss 

sa 

sa 

Figure 49. The geometry and numbering for bicyclo[2.1.l]hex-
ane-2,5-seraidione. Two structures were used: 
Structure A had AL=l40° and Structure B had Z.L= 
136°: distance C1-C4 = 2.07&. 
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Table 8. Observed and calculated splitting constants for 
bicyclo [2.1, l]hexane -2,5 -semidione. 

Hydrogen 1(4) 5(6)a 5(6)s 

Obsd. 0. .20 10 .10 0. 40 

Calcd. A 0. ,0 12 .70 1. 54 

Calcd. B 0. ,0 10 .89 0. 79 

The probable coupling mechanism of these protons is spin 

polarization, and Extended Huckel Calculations do not include 

this. 

Cyclobutanesemidiones 

Calculations were run on the parent system and three bi­

cyclic systems. These three systems were: bicyclo[2.1.0]-

pentane-2,3-semidione, bicyclo[2.2.0]hexane-2,5-semidione, and 

bicyclo[5.2.0]heptane-6,7-semidione. The first two bicyclic 

systems have thus far resisted synthesis. The geometries for 

these three bicyclic systems are shown in Figures 50 and 51 

and the results of the calculations are given in Tables 9 

through 12. 

For the parent system, the geometry follows directly from 

our chosen set of rules. Good agreement between the observed 

(l4) and calculated values resulted with the difference being 

only 10^. For the unknown bicyclo[2.1.0]pentane-2,5-semidione 

and bicyclo[2.2.0]hexane-2,5-semidione, the calculated values 

for the a-hydrogens are surprisingly small. The synthesis 
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K 
.+ 

K 

Figure ^0. The geometry and numbering for cyclobutanesemi-
dione and blcyclo[2.1.0]pentane-2,3-semidione. 
For the bicyclic system two structures were used, 
Structure A had Z.L=115° and Structure B had LL= 
120°. 
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endo 

exo 

;endo 

exo 
H e ndo 

exo 

Figure 51. The geometry and numbering for bicyclo[2.2.0]hex-
ane-2,3-semidione and bicyclo[3.2.0]heptane-6,7-
semidione. Structure A had Z.L=115° and Structure 
B had angle L=120°. 
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Table 9. Observed and calculated splitting constants for 
cyclobatanesemidione. 

Obsd. 13.9 

Calcd. 15.4 • 

Table 10. Calculated splitting constants for bicyclo[2.1.0]-
pentane-2,5-seraidione. 

Position 1(4) 5-a 5-s 

Calcd. A 2.11 0.12 8.52 

Calcd. B ).02 0.06 5.95 

Table 11. Calculated splitting constants for bicyclo[2.2.0]-
hexane-2,5-seraidione. 

Position 1(4) 5(6) -exo 5(6). -endo 

Calcd. A 5.30 2.03 0.50 

Calcd. B 7.08 1.26 0.16 

Table 12. Observed and calculated splitting 
cyclo[3.2.0]heptane-6,7-semidione. 

constants for bi-

Position 1(5) 2(4) -exo 2(4) -endo 3-exo 3-endo 

Obsd. 12.8 0.62 0.06 0.62 or 0.20 

Calcd. B 14.85 0.92 0.59 0.91 0.44 

Calcd. A 11.78 2.10 1.44 1.02 0.27 
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Table 13. Observed and calculated splitting constants for 
bicyclo[2.2.2]octane-2,3-semidione. 

Position 1(4) exo endo 

Obsd. 0.0 2.09 0.0 

Calcd. A 0.0 1.72 0.32 

Calcd. B 0.0 3.22 0.19 

of either of these systems is eagerly awaited to see Just how 

well the observed values will agree with the calculated ones. 

Bicyclo[3.2.0]heptane-6,7-semidione is known and the cal­

culated values, with the exception of the 2(4)-endo-position, 

for Structure A agree quite well with the observed hfsc. Per­

haps better agreement could have been obtained if the five-

membered ring was assumed to be nonplanar or if the angle be­

tween the rings was chosen to be slightly greater than 120°. 

Bicyclo[2.2.21octane-2,3-semidione 

The observed and calculated values are given in Table 13 

and the geometries used in the calculations are shown in 

Figure 52. Structure B is the same structure that Underwood 

and Givens (32) used in their calculations. This structure 

has tetrahedral carbon bond angles of —120° and —100°. Struc­

ture B with angles approximately 110° was felt to be much more 

reasonable. Agreement between calculated and observed (l2) 

values using Structure A is fairly good, except that the endo-

protons are not observed experimentally whereas the program 
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xo 

H endo 

Figure 52. The geometry and numbering for bicyclo[2.2.2]oc-
tane-2j3-semidione. The angles between planes 
A, B and^C were 120°, and the Ci-C^ distance 
was 2.65Â for Structure A and ^.OOAfor Structure 
B. 
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Table l4. Observed and calculated splittings for exo- and 
endo-tricyclo[3.2.2.0^ ̂"^Inonane -6,7-semidione. 

Position 1(5) 2(4)n 3a 3s 8(9)x 8(9)n 2(4)x 

Exo-

Obsd.^ 0.65 0.32 1.98 0.20 2.21 0,00 

Calcd. A 0.13 0.00 2.06 0.10 1.60 0.47 

Endo-

Obsd. 

0
 
0
 
0
 —  —  — —  

I—1 m
 
0
 or 0.39 2.32 0.21 or 0.13 

Calcd. A 0.03 — — — — 1.26 0.86 2.00 0.50 0.34 

^Assignment based on comparison to semidiones XXXVII to 
XL. 

does predict an observable hfsc. This is the same as what 

happened in the case of bicyclo[2.2.1]heptane-2,5-semidione. 

Exo- and Endo-tricyclo[3.2.2.Oinonane-6,7-semidione 

The results of the calculations are given in Table 14 

and the geometries used for the calculations are shown in 

Figure 53. The calculations on these two systems were pre­

formed to see if an observable hfsc would be predicted for the 

bridgehead protons. Experimentally, bridgehead splittings are 

observed for the exo-isomer whereas they are not observed for 

the endo-isomer. The results of the calculations predict an 

observable hfsc only for the exo-isomer, although qualita­

tively the predicted hfsc is too small. That an observable 

hfsc would be predicted is surprising in that the structures 

used had the bridgehead protons in the nodal plane of the 



www.manaraa.com

124 

3s 

Figure 53. The geometry and numbering for exo- and endo-
trlcycloC 3.2.2. 0^ ̂^jnonane-ô^Y-semidione"! The 
angles between planes A, and C were 120° and 
the angle between planes C and D was 115°• The 
C1-C5 distance was 2.65A. 
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TT-system. The results then suggest that the observable hfsc 

of the bridgehead protons in the exo-isomer is a result of 

two effects. First, a slight structural change in the mole­

cule and second, that the cyclopropyl ring has an effect on 

the molecular orbitals of the system, giving rise to a slight 

spin density around the bridgehead protons. No attempt was 

made to improve the results of the calculations by changing 

the input geometries. 
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THE EFFECT OF A. CYCLOPROPYL RING ON LONG RANGE HYPERFINE 
SPLITTING CONSTANTS 

A. number of mechanisms have been proposed whereby the 

unpaired electron spin density can be delocalized into the 

Is atomic orbital of hydrogen, thus enabling coupling be -

tween the nucleus of the atom and the unpaired electron. 

Most of these mechanisms have one thing in common. Only 

localized orbitals bonding one atom to the next are given 

consideration. Hoffman and Lipscomb (51), with their Ex­

tended Huckel Theory, broke free of this confinement and 

gave consideration to molecular orbitals extending over the 

whole molecule. In these orbitals, even remote groups could 

have an appreciable effect on the bonding patterns of atoms 

closer to the orbitals in which the unpaired electron mainly 

resides. In any case, whatever the mechanism by which the 

electron spin density "enters" into the Is orbital of the 

hydrogen, the electron will have a finite probability of 

being at the nucleus, and the nuclear spin will then couple 

with the electron spin as described by the Fermi contact 

mechanism (72 ). 

One of the delocalization mechanisms is the spin polar­

ization mechanism. For example, a hydrogen bonded directly 

to a carbon atom, which is part of the TT-system in which this 

unpaired electron resides, feels the unpaired spin density 

via the a-bonding electrons of the carbon hydrogen bond. A 

valence bond picture of this mechanism is shown below for 

XLV. 
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A second proposed method of spin transfer is via hyper-

conjugation, where the orbial containing the unpaired electron 

overlaps with the carbon hydrogen bonding orbital (XLVI) in 

the cases where the hydrogen is an addition bond further re -

moved. This type of overlap would naturally be dependent on 

the dihedral angle made by the axis of these two orbitals. 

The magnitude of the hyperfine interactions could then be 

given by the Heller-McConne11 (70) equation where the p is 

the spin density on the adjacent carbon of the ÏÏ-system, 

the spin polarization term, and Bcos^Q the hyperconjugation 

term. 

For interactions with protons one more bond removed from 

the TÎ-system, mechanisms similar to the previous two have been 

applied. Homohyperconjugation is then the obvious extension 

or C C 

H* 

a^ = Pq(BQ + Bcos^e) 
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of hyperconjugation, and nicely explains the sterospecific 

nature of the 2V hyperfine interactions. An example of this 

is the case of bicyclo[2.2.1]heptane-2,3-semidione where 

large hfsc are observed for anti-7- and exo-5,6-protons but 

only small interactions occur for the corresponding syn- and 

endo-protons. Carbon-carbon hyperconjugation can be used to 

H* 

(2.5) 

account for the small splitting of the syn-proton, and also 

for small changes in the magnitude of these splittings. 

Q-

Homohyperconjugation also nicely accounts for the decrease in 

2V splittings upon alkyl substitution into the syn or endo 

positions. The substituent is thought to introduce a steric 

hindrance of the "bond formation". 

In systems where the symmetry of the TT-orbital forbids 

homohyperconjugation, e.g., in XLVII, Kosraan and Stock (72) 
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0 0 

0 

have concluded that the small splittings are due to a spin 

polarization type of mechanism. 

The extension of these mechanisms for the 2-^V and 3V 

interactions are shown as XLVIII and IL. As evidenced by 

the preceding work, the 2-^V interactions are as highly stereo-

specific as the l-èV and 2V Interactions, and they also show 

a direct dependence on bond angles (as hyperconjugation) and 

on the trans-coplanarity of the bonds (as does homohyper-

conjugation). It would seem rather unreasonable to require a 

XLVII 0* 

XLVIII IL 
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fundamentally different mechanism to explain hyperfine in­

teractions for hydrogens which differ in distance from the 

TT-system by an additional a-bond (as in going from the 2V 

to the 2-è-V). 

The Hoffman-Lipscomb Extended Huckel Theory "forms orbi-

tals which extend over the whole molecule. These orbitals 

are then qualitatively ordered with respect to energy, and 

the valence electrons of the molecule are added in pairs to 

the molecular orbitals in the order of increasing energy. 

After all the pairs of electrons have been added, one final 

electron remains (in the case of radicals) and this is added 

to the next orbital. The results of the calculations indi­

cate that this orbital mainly consists of the TT-system, but 

added to this are contributions from other orbitals in the 

molecule. This orbital then allows the electron to be in 

other parts of the molecule, and hence able to couple with 

certain atoms, depending on their contributions to the for­

mation of this orbital. 

The two main differences between this and the previous 

theories is that first, the unpaired electron spin needs no 

direct bond between the TT-system and the part of the molecule 

which has hyperfine interactions: namely, an anti-bonding 

orbital in a certain section would suffice for the spin de -

localization, as in L. Secondly, direct overlap between 

the TT-system and the other part of the molecule is no longer 

required, as evidenced by predictions of large hfsc for 2-^V 
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L 

protons. 

One main success of the Extended Huckel Theory is that 

electron delocalization is optimized when the atoms are 

arranged in a trans-coplanar manner. Just why this is so, is 

still uncertain, hut the fact remains that it totally agrees 

with the experimental facts. 

The introduction of a cyclopropyl ring into a molecule 

causes great changes in the predicted hfsc of the calcula­

tions. The cyclopropane ring itself contains a great mass 

of interacting orbitals confined into a small spacial volume., 

and it is thus quite reasonable to expect large changes in 

overlap in the rest of the molecule when this moiety is intro­

duced. 

For example, consider the bicyclo[3.1.0]hexane-2,3-

semidione system. The five-membered ring must have a struc­

ture quite similar to cyclopentadiene since the double bond 

of the TT-system and the cyclopropane ring each require 

eclipsed bonds extending from them. This woula require the 

methylene carbon to be in the same plane as the other carbons 

of the ring. With this requirement also, follows the require­

ment that the hydrogens of this methylene carbon must make 
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the same dihedral angle with the axis of the TT-system 

orbital of the adjacent carbon. 

Experimentally these two hydrogens have hfsc of 14.9 

and 7.86 G. Hyperconjugatlon predicts that two hydrogens on 

the same carbon, which both make the same dihedral angle with 

respect to the adjacent p^ orbital of the IT-system must also 

have the same hfsc, and that hydrogens with different dihedral 

angles would have different hfsc. Consequently, solution of 

the Heller-McConne11 equation (70) gives dihedral angles for 

these hydrogens of —45° and ~15°. Dihedral angles such as 

these would require an extremely distorted geometry for the 

five-membered ring. Using an undistorted five-membered ring 

geometry in the Extended Huckel calculations predicts hfsc 

for these hydrogens, which have the same dihedral angles, of 

—9 G and —14 G. These values are quite close to the experi­

mental values and are in direct contradiction to the Helier-

McConnell equation. Now the question arises as to how hydro­

gens which have the same dihedral angles can have different 

hfsc. 

The answer to this question lies in the unsymmetrical 

substituent on the ring. The cyclopropane ring, with its 

great number of orbitals in a small volume, is probably one 

of the best ways to remove the symmetry of the molecular or­

bital about the ring (the symmetry that is being discussed is 

the plane of symmetry containing the five carbon atoms of the 



www.manaraa.com

1)3 

ring). Consider the three atoms of Lia. Lib shows the orbi-

( S 
Lia Lib 

tais of these atoms which contribute to the particular molecu­

lar orbital containing the unpaired electron, when the system 

has a symmetrical ring. Since there is equal overlap in this 

case the hydrogens would be predicted to have equal hfsc. 

Introduction of the close unsymmetrical moiety into the 

ring causes additional orbitals of this carbon to be used in 

the formation of an unsymmetrical molecular orbital. In Lie 

and Lid, a p orbital and an s orbital have now been introduced 

into the system. In each case, by virtue of the signs we have 

chosen for these orbitals, the amount of overlap with Hi has 

decreased, and the amount of overlap with Hg has increased. 

Lie Lid 

Since the extent of electron delocalization onto the hydro­

gens, and hence the size of the hfsc, depends directly on the 
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amount of overlap. Hi would now have a smaller hfsc than Ha. 

The more that these additional orbitals participate in the 

formation of the molecular orbital of the molecule, the 

greater will be the difference between the hfsc of Hi and Hg. 

This is exactly what happens in the case of bicyclo[5.1.0]-

hexane-2,5-semidione. Introduction of the cyclopropl orbitals 

causes these additional orbitals to be used, and the predicted 

hfsc for Hg^g and H^^^g are quite different. 

A second example of the effect of the cyclopropyl ring 

is given in the series of XXX, VII, and XXIX. Qualitatively 

0.98 
(1.04) 

XXIX 

2.49 

the same effect occurs on the a-hydrogens of bicyclo[2.2.1]-

heptane-2,5-semidione (VIl). Introduction of the exo or endo-

cyclopropyl rings in XXX and XXIX causes a drastic change in 

the observed values of the hfsc of the bridgehead protons. 

The calculated values (in parentheses) follow this same 

trend, although the dihedral angle of this hydrogen has not 

been changed. Although this change in hfsc is not inconsis­

tent with the Heller-McConnell equation, since it could be 

accounted for by a drastic change in the term, the validity 
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of using an equation which must have "correction factors" 

which change for similar molecules is somewhat dubious. 

The change in the hfsc of the bridgehead proton of VII 

is totally consistent with the difference between the 4-exo-

and 4-endo-protons of bicyclo[3.1.0]hexane-2,5-semidione. 

The bridgehead proton is on the same side of plane C (Figure 

4-7) as the exo-cyclopropyl ring. The 4-endo-proton of the 

bicyclohexane system is also on the same side of the five-

membered ring plane as the cyclopropane ring. Both these 

protons have hfsc which are reduced in magnitude. Conversely, 

the 4-exo-proton of the bicyclohexane system, and the bridge­

head proton of XXIX are 'on opposite sides of the ring, and 

both these protons show an increase in their hfsc. 

As evidenced by the results concerning these cyclopropane 

compounds, and the calculations on the other molecules in the 

"Extended Huckel Calculations" chapter, the molecular orbital 

method of quantitative prediction of hfsc can be quite suc­

cessful. It would therefore appear that the main way in 

which proton hfsc occur in rigid semidiones, is via electron 

delocalization in the molecular orbitals of these systems. 

But that is not to say that this is the only cause of proton 

hfsc. Effects of electron polarization are probably present 

to some extent. In fact, in numerous cases, such as XLVTI, 

certain proton hfsc are predicted to be zero by the molecular 

orbital method of calculation. These protons nevertheless 

have observable hfsc, and an electron polarization mechanism 
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would be required to explain their splittings. 

Various theoretical methods of long-range quantitative 

prediction of hfsc via spin polarization have been developed 

(74-76). As with the molecular orbital theory, these methods 

can be quite successful in some cases, but are incorrect in 

other instances. Thus, although there are many theories 

which can account for many experimental facts, no unique 

explanation exists for the mechanism of long-range hyperfine 

interactions. 
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EXPERIMENTAL 

Reagents 

Common solvents and chemicals were obtained from commer­

cial sources and used without further purification. Sodium-

potassium alloy was prepared by mixing the desired amounts 

of each metal in refluxing dimethoxyethane (DME) under nitro­

gen. The liquid alloy could be pipetted out and stored for 

appreciable lengths of time under dimethoxyethane. 

Preparation of Semidiones 

The semidiones were prepared as solutions in the standard 

apparatus (15). Pour precursors to the radicals were used: 

diesters, ketones, bis(trimethylsiloxy)alkenes, and benzoyl 

esters of a-hydroxy ketones. The solvents used were DME when 

diesters were the precursors and usually DMSO for the other 

precursors. The methods of generation have been described 

elsewhere {12-15) except for the benzoyl esters, and these 

could be handled in the same manner as the bis(trimethylsilox-

y)alkenes. 

Recording of Spectra 

The esr spectra were obtained from either a Varian E-5 

spectrometer using a 4 inch magnet and 100 KHz field modula­

tion or a Varian V-4500 spectrometer with a 9 inch magnet 

and 100 KHz field modulation. Nmr spectra were recorded on 

a Varian A-60 spectrometer. Infrared spectra were recorded 

on a Perkin-Elmer Model 21 Double Beam Spectrometer. Mass 

spectra were obtained with an Atlas CH4 spectrometer. 
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Preparation of Compounds 

Bis(trlmethylsiloxy)alkenes 

If possible, the bis(trimethylsiloxy)alkenes were pre­

pared from the pure diesters. A IO-5O mg sample of the 

diester was mixed with 1-2 ml of chlorotrimethylsilane in 20 

ml of ethyl ether or dimethoxyethane. The solution was de­

gassed with Na for 5 min and 0.1-0.25 ml of sodium-potassium 

alloy (1:^-1:4 by weight) was added. The mixture was vigor­

ously stirred under Ns for 1-4 hr and then filtered. The 

solid material filtered off must be disposed of with care, 

usually covering it with xylene and slowly adding methanol 

is satisfactory. The clear solution is condensed under 

vacuum to remove all volatile substances. The crude bis(tri-

methylsiloxy)alkene remains as either an oil or a solid and 

may be used for generation of the semidione without further 

purification. 

Dimethyl 4-methylpimelate (Hp) 

This diester was prepared from the corresponding glu-

taric acid via the Arendt-Eisnert reaction (77). The pro­

cedure given here is general and was used for all the reac­

tions of this type. 3-Methylglutaric acid (3.8 g) was added 

to 40 ml benzene with 10 ml of thionyl chloride and a few 

drops of pyridine. The mixture was stirred for 4 hr at room 

temperature and for 1 hr at 45°. The solvent and excess 

thionyl chloride were removed under reduced pressure and an 

additional 40 ml of benzene was added and removed under re­
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duced pressure to remove the final traces of thionyl chloride. 

The diacid chloride was dissolved in 100 ml of ether and 

filtered through glass wool. The ether solution was then 

added to an etheral solution of diazomethane (excess), pre­

pared from 33 g of Diazald (78) at 0°. When the addition 

was complete, the solution was allowed to slowly warm to room 

temperature overnight. The ether was removed under reduced 

pressure to give the crude bis(diazo)ketone (caution is ad­

vised as this type of compound is unstable and can decompose 

with explosive force). The bis(diazo)ketone was dissolved 

in 50 ml of methanol. A mixture of 0.5 g silver acetate in 

5 ml of triethylamine was added in portions to this stirred 

solution. After the addition and nitrogen evolution was com­

plete, the solution was heated to reflux, decolorized with 

charcoal, filtered, and cooled. The solvent was removed 

under reduced pressure and the residue taken up in 100 ml of 

ether. The ether solution was washed with 2 N hydrochloric 

acid and 10^ sodium bicarbonate and then dried over magnesium 

sulfate. Filtering and removal of the ether under reduced 

pressure gave 2.1 g of the crude diester. Final purification 

was accomplished by vpc through a 5' by column (10^ QF-1, 

15^ PFAP, 15^ Carbowax 20 M, and 20$^ D.EGS gave the best sepa­

ration for all the diesters) at l60-200° depending on the 

helium flow : ir neat 5.73ju*, pmr (CCI4) Ô 3.6o (s,6), 2.45-

2.1 (t,4,J=7 Hz), 2.1-1.0 (m,5), 1.0-0.85 (m,3)', mass spec­

trum (70 eV) m/e (rel intensity) M'^=202 (O), I7I (21), 143 
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(5). 

Dimethyl 4,4-ditnethylplmelate (IIIp) 

Using the procedure for Hp, from 0.5 g of 5,3-dimethyl-

glutaric acid was obtained 200 mg of the diester: ir neat 

5.78M", pmr (CCI*) 6 5.60 (8,6), 2.4-1.95 (m,4), 1.75-1.3 

(m,4,), 0.88 (s,6)*, mass spectrum (70 ev) m/e (rel inten­

sity) M+=2l6 (0), 185 (15), 157 (7). 

Dimethyl 3-methylpimelate (iVp) 

Using the procedure for Hp, from 3.7 g of 2-methyl-

glutaric acid was obtained 3.4 g of the diester; ir neat 

5.78%; pmr (CCI*) ô 3.60 (s,6), 2.5-2.0 (m,4), 1.9-1.05 

(m,3)", mass spectrum (70 ev) m/e (rel intensity) M"''=202 

(0), 171 (25), 143 (4). 

Dimethyl meso-3,5-dimethylpimelate (Vp) and Dimethyl d,l-3, 

5-dimethylpimelate (VIp) 

Using the procedure for Hp, from 3.6 g of the meso-

and d,1-2,4-dimethylglutaric acids was obtained 2.4 g of the 

mixed diesters. The mixed diesters (1.5 g) and 4,0 g of 

potassium hydroxide in 50 ml of ethanol were refluxed for 10 

hr. The solvent was removed under reduced pressure and 8 ml 

of water was added. After acidifying with 50^ sulfuric acid, 

the mixture was extracted three times with ethyl acetate. 

After drying, the solvent was removed to give the mixture of 

diacids. To the mixture in a centrifuge tube was added 3 ml 

of benzene. This was then heated to reflux, cooled, and 

centrifuged. Decanting off the benzene, which contained the 
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meso-diacid, left the crude d,l-diacid. Recrystallization 

from 50/50 benzene-acetone gave 220 mg of the d,l-diacid mp 

156-138° [lit (79) 159-140°]. The decanted benzene solution 

was heated to remove most of the benzene, and 1 ml of ethyl 

acetate was added. The mixture was heated to reflux and then 

cooled to -20° for 10 hr. Décantation of the solvent left 

a mixture of the diacids, biit removal of the ethyl acetate 

from the decanted portion left an oil which solidified on 

standing. Recrystallization from 50/50 benzene-hexane gave 

relatively pure meso-diacid (the impurity was a small amount 

of the d,l form) mp 75-82° [lit (79) 95-96°], 75 mg. Both 

isomers were esterfied with boron trifluoride methanol complex 

(80): d,l-isomer; ir neat 5.78%; pmr (CCI4) 6 5.60 (s,6), 

1.65-2.5 (m,6), 1.5-1.05 (m,2), 1.05-0.85 (d,6,J=6.5 Hz); 

mass spectrum (70 eV) m/e (rel intensity) M^=2l6 (O), I85 

(25), 157 (5): meso-isomer: ir neat 5.78%; pmr (CCI4) 

Ô 5.60 (s,6), 2.4-1.7 (m,2), 1.05-0.85 (d,6,J=6.5 Hz); mass 

spectrum (70 eV) m/e (rel intensity) M^=210 (O), I85 (15), 

157 (5). The fine structure of the ir and pmr spectra of 

the two isomeric diesters were distinctly different. 

Cis-1,5-cyclopentanedicarboxylic acid 

Norbornylene was oxidized according to the method of 

Birch ̂  (81). In 100 ml of octane was dissolved 50 g 

of norbornylene and this solution was added to 1.5 1. of water 

in a 5 1. round bottom flask equipped with a high speed stir­

rer, thermometer, and carbon dioxide inlet tube. A steady 
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stream of carbon dioxide was passed into it while a saturated 

solution of 270 g of potassium permanganate in water was 

added with vigorous stirring and at a rate such that the 

temperature did not go above 50°. After the addition was 

complete and the color of permanganate had disappeared, 

sulphur dioxide (from hydrochloric acid and sodium bisulphite) 

was passed into the solution until the brown color of man­

ganese dioxide had been removed. The solution was concentra­

ted to 1 1., acidified with a solution of 250 g of sulfuric 

acid in 350 g of water, and extracted with three 25O ml por­

tions of ether. Removal of the ether followed by drying with 

a Dean-Stark apparatus using benzene, and recrystallization 

from benzene, yielded 21 g of crystals, mp 117.5-119° [lit 

(81) 119.9-120.6°]. 

Dimethyl cis-1,3-cyclopentanediacetate fiXp) 

Using the procedure for Hp, 8.5 g of cis -1,3-cyclo-

pentanedicarboxylic acid was chain extended to give 7.0 g 

(62#) of the desired diester, bp 107-112° at O.5 mm : ir neat 

5.78/Lt*, pmr (CCI4) Ô 3.60 (s,6), 2.50-0.60 (m,12)*, mass 

spectrum (70 eV) m/e (rel intensity) M^=2l4 (O). 183 (20), 

165 (6). See lit (82,83). 

Exo-2-syn-7-dibromobicyclo[2.2.1]heptane 

The procedure of Kwart and Kaplan (84) was used to bro-

minate 60 g of norbornene. To the norbornene in 300 ml of 

CCI4 with 51 g of dry pyridine, was added 102 g of bromine 

dropwise, while the flask was cooled in a salt-ice bath. 
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After the addition, the solution was filtered, washed with 6 

N hydrochloric acid, and dried with magnesium sulfate. Re­

moval of solvent, followed by fractional distillation afforded 

46.4 g of the dibromide, bp 80-90* at 0.2 mm [lit (15) 103-

107° at 4 mm]. 

Syn-7-bromobicyclo[2.2.llheptene 

Potassium (7.4 g) was dissolved in I65 ml of hot t-butyl 

alcohol, and to this solution was added 46.4 g of exo-2-syn-

7-dibromobicyclo[2.2.1]heptene. After refluxing 12 hr the 

volume of the solution was doubled by the addition of water, 

and 50 ml of ether was then added. The layers were separated 

and the aqueous layer extracted three times with 100 ml of 

ether. The organics were combined, dried with magnesium sul­

phate, and distilled to give I7.0 g of product bp 55-60° at 

7mm, [lit (84) 68-70° at 15 mm] : pmr neat Ô 6.O5-5.85 (m,2), 

5.90-3.75 (m,l), 5.05-2.80 (m,2), 1.95-0.85 (m,4). 

Anti-(85^) and syn-(l5^)-7-deuterobicyclo[2.2.llheptene 

This was prepared and analyzed by G. Holland (15) from 

syn-7-bromobicyclo[2.2.11heptene. 

Trans-(85^) and cis-(l5^)-2-deutero-cis-l,5-cyclopentanedicar-

boxylic acid 

The deuterated norbornylene was oxidized in the same 

manner as the undeuterated material: the presence of one 

deuterium was confirmed by the pmr and the mass spectra. 
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Dimethyl trans-(85^) and cis-(l5^)-2-deutero-cis-l,3-cyclo-

pentanediacetate (iX-diTj) 

This material was prepared from the deuterated cyclo-

pentanedicarboxylic acid using the procedure which had been 

used for the preparation of the undeuterated IXp. The pmr 

spectrum and mass spectrum agreed with the incorporation of 

one deuterium into the molecule. 

Dimethyl trans-(50^) and cis-(50#^-2-deutero-cis-l,3-^yGlo-

pentanedicarboxylic acid 

Dimethyl trans-(85^) and cis-(13^)-2-deutero-cis-l,3-

cyclopentanedicarboxylate was prepared according to the pro­

cedure described by Holland (15) from the corresponding di-

acid. The dies ter 0.5 g in 50 nil of methanol to which 0.5 g 

of sodium had been added, was refluxed for 24 hr. Water 

(5 ml) was added and the solution refluxed for another three 

hr. Removal of solvent, addition of 10 ml of water, acidifi­

cation with 50^ sulfuric acid, extraction with three 50 ml 

portions of ether, drying with magnesium sulfate, and re­

moval of solvent, left the crude product which was used 

without further purification. 

Dimethyl trans-(50^) and cis-(50^)-2-deutero-cis-l,5-cyclo-

pentanediacetate (iX-dip) 

The product was prepared from the corresponding cyclo-

pentane dicarboxylic acid using the procedure described for 

the 85:15^ material. The presence of one deuterium was con­

firmed by pmr and mass spectrum. 



www.manaraa.com

145 

Potassium azodlcarboxylate 

Potassium azodlcarboxylate was prepared from azodl-

carbonamide using the procedure of Thiele (85). 

Cis-4,5-dideuterocyclohexene 

Preparation using deuterodiimide 1,4-cyclohexadiene, 

(17 g) in 20 ml of benzene was mixed with a solution of 24 g 

of potassium azodlcarboxylate in 100 ml of methanol-d (86). 

Acetic acid-d, prepared by mixing and warming equimolar 

quantities of acetic anhydride and deuterium oxide (28 g) was 

added over a period of 1 hr. The mixture was stirred for 5 

hr and 25O ml of ether was added. The etheral solution was 

washed with 50 ml of water, 50 ml of aqueous sodium bicar­

bonate, and 50 ml of water. After drying with magnesium 

sulfate, careful distillation gave a fraction consisting of 

benzene, 1,4-cyclohexadiene, and cis-4,5-dideuterocyclohexene; 

the latter two in a ratio of 6:1. This mixture was then oxi­

dized without further separation. 

Preparation with deuterodiborane A composite of the 

methods of Brown and Murray, (87) and Sondheimer and Wolfe 

(88) was used for this reaction. To a mixture of 16 g of 1,4-

cyclohexadiene, 50 ml of diglyme, and 2 g of lithium aluminum 

deuteride under nitrogen, was added 75 mmoles of boron tri-

fluorlde-etherate over a period of 1 hr. The solution was 

stirred an additional 50 rain and 20 g of acetic acid-d was 

added. The mixture was heated to reflux for 2 hr and the 

product slowly distilled. Redistillation gave 5.5 S of a 
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1:1 mixture of starting material and deuterated product, 

which was oxidized without further purification. 

Dimethyl meso-3,4-dideuteroadipate 

The crude mixture from the deuterodiimide reaction was 

oxidized with l80 g of potassium permanganate in 1.5 1. of 

acetone using the procedure for oxidizing endo-tricyclo-

[5.2.1.0®^^]oct-6-ene to dimethyl bicyclo[3.1.0]hexane-endo, 

endo-2,4-dlcarboxylate (XXIXp). The mixture of crude diacids 

was refluxed with 100 ml of methanol containing a trace of 

acid for 4 hr. Removal of solvent, addition of I50 ml of 

ether, extraction with 20 ml of aqueous sodium bicarbonate, 

drying, and removal of solvent, gave a mixture of diesters. 

The crude mixture was purified by vpc with a 5' by , 15^ 

Carbowax column at 150° to give 0.6 g of the pure product: 

pmr (CCI4) Ô 5.60 (s,6), 2.45-2.15 (m,4), 1.75-1.45 (m,2+). 

Repeated integration gave the result that the product from the 

deuterodiimide reaction had at least 80^ of the desired deu­

terium incorporated and from the deuterodiborane, at least 

90^ deuterium incorporation. 

Dimethyl erythro-3,4-dideuteropimelate (XIIp) 

The deuterated dimethyl adipate (0.5 g) was refluxed 

in 50 ml of methanol containing an equimolar amount of sodium 

hydroxide for 4 hr. Removal of solvent, acidification with 2 

M sulfuric acid, and extraction with ether, gave a solution of 

the three possible products. Drying with magnesium sulfate 

and removal of solvent gave the crude acid-ester which was 
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chain extended using the Arendt-Eisnert procedure for Hp. 

The crude dimethyIpimelate was purified by vpc using a 5' by 

•i" Carbowax 20 M column at l60° to give 0.2 g of the pure 

product: pmr (CCI4) ô 3.60 (8,6), 2.45-2.10 (m,4), I.90-

1.25 (m,4+). The retention time on this particular column 

was identical to an undeuterated sample of this diester. 

2-Carbethoxycyclohexanone 

This ester was prepared from I96 g of cyclohexanone and 

292 g of diethyl oxylate according to the method of Snyder 

et al. (89). The yield was 164.8 g of product, bp 120-130° 

(37 mm) [lit (89) 125-140° (40 mm)]: pmr (CCI4) ô 4.40-3.95 

(q,2,j=7 Hz), 2.40-1.50 (m,8), 1.45-1.15 (t,3,J=7 Hz). 

3 - (1 -Garbe thoxy-2-ketocyclohexyl)-proplonaldehyde 

The condensation of 25 g of 2-carbethoxycyclohexanone 

with 10 g of acrolein in ethanol was done using the procedure 

of Cope and Synerholm (90). The product, 18.2 g, had a bp 

109-112° (0.2 mm) [lit (90) l40-l43° (1.5 mm)]: pmr (CCI4) 

6 9.65-9.55 (t,l,J=1.2 Hz), 4.40-3.95 (q,2,J=7 Hz), 2.65-1.45 

(m,12), 1.45-1.15 (t,3,J=7 Hz). 

1-Carbethoxybicyclo[3.3.llnon-3-en-9-one 

/3-(l-Carbethoxy-2-ketocyclohexyl)-propionaldehyde (I8 g) 

was added to 36 ml of concentrated sulfuric acid according to 

the procedure of Cope and Synerholm (90). The workup and 

distillation gave 8.0 g of product which solidified on stand­

ing: mp 45.5-46.5° [lit (90) 48.5-49.5°]% pmr (CCI4) ô 6,15-

5.80 (m,l), 5.75-5.35 (m,l), 4.40-3.95 (q,2,J=7 Hz), 3.65-I.50 
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(m,9), 1.45-1.15 (t,3,J=7 Hz). 

Diethyl 1.5-cyclooctenedicarboxylate 

The diester was prepared from 1-carbethoxybicyclo-

[3.3.1]non-3-ene-9-one using the method of Cope ̂ t al. (91): 

pmr (CCI4) 6 7.10-6.70 (t,l,J=8 Hz), 4.40-3.80 (m,4), 2.70-

1.45 (m,ll), 1.45-1.05 (m,6). 

Dimethyl 1,5-cyclooctanedicarboxylate (XVIIIp) 

Potassium hydroxide (2.0 g) and 2.0 g of diethyl 1,5-

cyclooctenedicarboxylate was refluxed overnight in 100 ml of 

ethanol. The solvent was removed under reduced pressure and 

10 ml of water were added to the residue. After acidifying it 

with concentrated hydrochloric acid, the mixture was extract­

ed three times with 75 nil of ether. Drying and removal of 

the ether left 1.9 g of crude diacid mp 175-200°, which gave 

0.85 g of material mp 208-214° after one recrystallization 

from ethyl acetate [lit (91) 217.5-219.5°]. Half of this 

material was hydrogenated in 20 ml of acetic acid at J>0 psi 

using 10^ Pd/C as a catalyst. Filtering and removal of the 

solvent left the crude diacid. Acetic anhydride (10 ml) was 

added to the crude product and the mixture refluxed for 4 hr, 

in order to convert the cis and trans mixture into the cis-

anhydride. The acetic anhydride was removed under reduced 

pressure, and 15 ml of methanol with a trace of acid, was 

added to the residue. Refluxing for 4 hr, removal of solvent, 

addition of 100 ml ether, washing with dilute sodium bicar­

bonate, drying, and removal of solvent, gave 290 mg of the 
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desired product. An analytical sample was purified by glpc 

at 190° through a 10^ QF-1 column (5' by -i") to give a pro­

duct which solidified on standing mp 59-46° pmr (CCI4) 

Ô 3.58 (s,6), 2.65-2.15 (m,2), 2.15-1.35 (m,12); ir neat 

5.74^i*, mass spectrum (70 eV) m/e (rel intensity), M^=228 

(1), 197 (12), 169 (37). 

1-Bromo-2-eye1oheptene 

From 100 g of cycloheptene, 184.5 g N-bromosuccinimide, 

and 1.3 g benzoyl peroxide in 7OO ml of carbon tetrachloride, 

was obtained 76 g (42^1) of product according to the method of 

Cope e_t (92), bp 57-60® at 3 mm. 

1,3-cycloheptadiene 

Quinoline (112 g) was added to the bromocycloheptene in 

the manner described by Cope ejb (92). The workup gave 

32.4 g of product bp 118-120° (79^)*, pmr neat Ô 5.7O (8,4), 

2.50-2.10 (m,4), 2.05-1.50 (m,2). 

Bicyclo[3.2.2lnon-6-ene-endo , cis-8,9-dicarboxylic anhydride 

Cycloheptadiene (70 g) and 74 g of maleic anhydride were 

heated to reflux in I50 ml of xylene for two hours. The 

solvent was removed under reduced pressure to give a residue 

which was recrystallized from ethyl acetate-hexane yielding 

39.7 g of crystalline product mp 102-104° [lit (93) 110-

111° 1', pmr (CDCI3) Ô 6.30-6.10 (m,2), 3.40-3.50 (ra,2), 3.15-

2.85 (m,2), 1.80-1.60 (m,6). 
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Bicyclo[3.2.2lnonane-endo,cis-6,7-dicarboxylie anhydride 

Bicyclo[5.2.2]non-6-ene-endOfCis-8,9-dicarboxylic 

anhydride (48 g) was hydrogenated in 150 ml ethyl acetate 

using 1 g of 10^ Pd/C as a catalyst to give an 85^ yield of 

product mp 152-155° [lit (93) 156-157°]: pmr (CH2CI2) 6 3.25-

3.15 (m,2), 2.50-2.30 (m,2), I.90-I.50 (m,10). 

Bicyclo[3.2.2]non-6-ene 

Bieyelo[3.2.2]nonane-endo,cis-6,7-dicarboxylic anhydride 

was refluxed with 400 ml of methanol containing a trace of 

acid for 10 hr. To the mixture was added two equivalents of 

sodium methoxide and the mixture refluxed an additional 10 

hr. The resulting solution was added to 5OO ml of 1 N sodium 

hydroxide and the methanol distilled off. The mixture was 

refluxed 4 hr, cooled, acidified with 50^ sulfuric acid, and 

extracted four times with 250 ml of ether. The ether was 

dried and rémoved under reduced pressure to presumably give 

the trans diacid. The crude diacid was then added to 80 g 

of lead tetraacetate (94) in 500 ml of pyridine in a 1 1. 

round bottom flask equipped with a reflux condenser, and 

heated to 75° for 30 min. The remaining solution was mixed 

with enough dilute nitric acid to make it acidic to Congo 

Red. This mixture was then extracted with three, 250 ml 

portions of ether, and the combined ether extracts were dried 

and the solvent distilled off to give 6.6 g of the crude ole­

fin which was greater than 90^ pure by glpc. An analytical 

sample prepared by glpc had mp 107-108°: pmr (CCI4) Ô 6.15-
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5.95 (m,2), 2.60-2.20 (ra,2), 1.85-1.30 (m,10). 

Dimethyl els-1,4-cycloheptanedicarboxylate (XXpi) 

Bicyclo[3.2.2]non-6-ene (5 g), 2.7 g of ammonium sulfate, 

12 g of potassium permanganate, and 215 ml of water, were 

stirred for 20 hr. The resulting solution was filtered and 

the volume reduced to 50 ml by removal of the solvent under 

reduced pressure. This solution was then acidified with 50^ 

sulfuric acid and extracted three times with 100 ml of ether. 

To this etheral solution was added an etheral diazomethane 

solution (78) until the characteristic color of diazomethane 

persisted. Removal of solvent gave a mixture of products 

from which the semidione was generated without further puri­

fication. The a,a'-dideuterodiester was obtained by exchang­

ing the C£-hydrogens in methanol-d containing a small amount 

of sodium methoxide. Removal of the solvent, dissolving the 

residue in ether, washing with water, and removal of the sol­

vent left the crude deuterated mixture. Both the deuterated 

and undeuterated esters were used for generation of the semi­

dione without further purification. 

2-Chloro-1-cyanoethyl acetate 

Oxalic acid dihydrate (350 g) and 400 g of chloroacet-

aldehyde diethyl acetal were placed in a 1 1. round bottom 

flask and heated to boiling. A distillate was collected into 

a receiver containing 100 g of water. The distillate (275 g, 

bp 85-90°) and water were diluted with an additional 100 ml 

of water and added rapidly to a solution of 130 g of sodium 
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cyanide in 400 ml of water cooled in a salt-ice bath. After 

stirring 10 min, the mixture was extracted four times with 

200 ml of ether. The extracts were dried, solvent stripped 

off, and distilled to give IO6.5 g of crude product {55%) 

bp 60-70° at 10 mm: pmr same as published (95). 

tt-Acetoxyacrylonitrile 

2-Chloro-l-cyanoethyl acetate (IO6.5 g) was diluted with 

1 1. of ether. Over a period of I5 min, 110 ml of triethyl 

amine in 100 ml of ether was added to this solution. The 

mixture was stirred for 7 hr and the solution and solid were 

washed five times with 60 ml of 10^ hydrochloric acid and 

once with 50 ml of water. After drying, a pinch of catchecol 

was added and the ether stripped off. Distillation gave 5^.5 

g of product (68^) bp 69° at 11 mm: pmr was the same as 

published (95). 

Bi cy c lo [ 3.2.21 non -6 -en -8 -one 

1,3-Cycloheptadiene (8.5 g) and 10 g of a-acetoxy-

acrylonitrile were heated in a sealed tube at 140° for 5 

days. The liquid, which had darkened, was added to warm 

sodium methoxide in methanol, prepared from 2 g of sodium 

in 100 ml of methanol. After standing an hour, 500 ml of 

water was added and the solution extracted three times with 

100 ml portions of methylene chloride. The combined extracts 

were dried over magnesium sulfate and the solvent was dis­

tilled off. To the remaining oil, 50 ml of carbon tetra­

chloride was added. Filtering and the removal of the solvent 
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gave 0.6 g of crude product. Purification by glpc gave 25O 

mg of pure ketone identical to a sample prepared using the 

route described by Freeman et al. for similar ketones (96): 

pmr (CCI4) Ô 6.45-5.85 (ra,2), 2.95-2.50 (m,2), 2.40-2.20 

(m,2), 2.00-1.40 (m,6). 

Bicyclo[3.2.2]nonan-6-one (XXpg) 

Hydrogénation of bicyclo[3.2.2]non-6-en-8-one in meth­

anol gave the product in quantitative yield when 10^ Pd/C 

was used as a catalyst; nip 167-169° (sealed tube) [lit (97) 

mp 170° (sealed tube)]. Generation of the semidione, using 

base and O2 in DMSO, gave a signal identical to that from XXpi. 

Bicyclor3.2.2lnon-6-ene-endo,cis-8 ,9-dimethanol 

Bicyclo[3.2.2]non-6-ene-endo,cis-8,9-dicarboxyllc an­

hydride in 250 ml of ether was slowly added to a mixture of 

21 g of lithium aluminum hydride in 500 ml of ether. The 

mixture was refluxed 3 hr after the addition was complete. 

Water (60 g) was slowly added to the mixture to decompose 

any remaining LIAIH4. An additional 1 1. of ether was added, 

the whole mixture filtered, and the ether removed under re­

duced pressure, to give the crude product which solidified 

on standing. Recrystallization from methanol gave 13.2 g 

of product mp 65.5-67.5°: pmr (CDCI3) Ô 6.10-5.85 (m,2), 

3.75-3.40 (m,6), 2.55-2.15 (m,4), 1.65-1.40 (ra,6). 

Bicyclo[3.2.2lnon--6-ene-endo,cis-8,9-dimethanol ditosylate 

In 125 ml of pyridine, 13.2 g of bicyclo[3.2.2]non-6-

ene-endo,cis-8,9-dimethanol and 38 g of p-toluenesulfonyl-
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chloride was dissolved and stirred for 24 hr. The mixture 

was poured into 400 ml of ice cold 6 N hydrochloric acid and 

the mixture was extracted three times with 500 ml of ethyl 

acetate. The combined extracts were washed with 100 ml of 6 N 

hydrochloric acid and 75 nil of saturated sodium bicarbonate. 

Removal of solvent after drying with magnesium sulfate gave 

31 g of an oil. Recrystallization from methanol gave 20.6 g 

of crystals, mp 90-91°'• pmr (CDÇI3) 6 7.90-7.65 (d,4,J=8.4 

Hz), 7.45-7.20 (d,4,J=8.4 Hz), 5.95-5.75 (m,2), 4.00-5.70 

(m,4), 2.55-2.20 (m,10), I.65-I.2O (m,6). 

EndOjCis  -8,9-d imethy lb icyc lo[5.2.2 lnon-6-ene 

Into a refluxing mixture of 6 g of lithium aluminum hy­

dride in 600 ml of ether was added 20 g of bicyclo[5.2.2]-

non-6-ene-endo,cis-8,9-dimethanol ditosylate via a soxlet 

extractor. The mixture was refluxed for three days and then 

50 ml of saturated ammonium chloride solution was slowly 

added. After filtering and drying, the ether was distilled 

off to leave 5.8 g of crude olefin, greater than 95$^ pure 

by pmr and glpc : pmr neat Ô 6.I5-5.9O (m,2), 2.30-1.90 (m,4), 

1.65-1.35 (m,6), 1.00-0.80 (m,6). 

Dimethyl cis ,cis -2 ,3-dimethyl(jycloheptane -cis -1,4-dicarbox-

ylate (XXIp) 

Endo,cis-8,9-dimethylbicyclo[3.2.2Inon-6-ene (5.8 g) was 

added to a mixture of 22 g of potassium permanganate and 1.6 

g of sodium bicarbonate in 5OO ml of acetone and the mixture 

was then stirred for 20 hr at room temperature. The mixture 
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was filtered and the filtercake was washed with acetone, and 

then added to 200 ml of water. Sulphur dioxide was bubbled 

through the mixture until the color of the manganese dioxide 

had vanished. The solution was acidified with 5^9^ sulfuric 

acid and the resulting solution extracted with three 200 ml 

portions of ether. After drying the combined ether extracts, 

the ether was removed and the crude mixture esterfied with 

boron triflnoride methanol complex (80). The resulting pro­

duct was a mixture of compounds, as had been the case with 

the parent compound. Generation of semidione gave a spectrum 

consistant with the desired radical. 

Dimethyl cis-1-cyclobutane-1-acetate-carboxylate (XXIIIp) 

Treatment of 6.4 g of cis-cyclobutane-1,3-diearboxylie 

anhydride (98) with 1.2 equivalent of methanol at reflux for 

1 hr gave the monoester; pmr (CHgCls) 6 2.15-2.65 (m,4), 

2.70-3.25 (m,2), 3.61 (s,3), 7.60 (s,l). The monoester was 

treated in the same manner as described for chain extension 

3-methylglutaric acid in the preparation of Hp, yielding 

5.9 g (58^) of the crude dies ter ~90^ pure by glpc', ir neat 

5.78%; pmr (CCI4) 6 1.55-3.15 (m,6), 3.6l (s,6)*, mass spec­

trum (70 eV) m/e (rel intensity) ]y["̂ =i86 (l), 155 (36), I27 

(14). 

Dimethyl cis-1,3-cyclobutanediacetate (XXIIp) 

A mixture of 3.2 g of cis-1,3-cyclobutanedicarboxylic 

anhydride and 3.2 g of 6 N hydrochloric acid was refluxed for 

10 min. The mixture was extracted twice with 50 ml of ether 
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and the extracts were then dried (MgSOa). Removal of ether 

under vacuum left the solid diacid which was chain extended 

(see Hp) to give 5.1 g (61^0 of product. The crude diester 

was purified by glpc on a 5' by , 10^ Qf-l column at l60°*, 

ir neat 5-78̂ ; pmr (CCI*) 6 1.1-1.7 (m,2), 2.10-2.60 (m,8), 

5.6O (s,6); mass spectrum (70 eV) m/e (rel intensity) M"̂ = 

200 (0), 169 (12), 141 (5). 

Diethyl 2,2-dimethyl-cis-cyclobutane-1-acetate-5-carboxylate 

(XXVp) 

This compound was prepared according to the method of 

Wielicki et al. (99); pmr (CHCI3) ô 4.20-2.70 (q,4,J=7 Hz), 

2.75-1.60 (m,6), 1.25-0.95 (t,6,J=7 Hz), 1.07 (s,3), 0.77 

(s,3). 

Diethyl 2 ,2-dimethylcyclobutane-cis-l,3-diacetate (XXIVp) 

This compound was prepared according to the method of 

Wielicki et a2. (99) but rather than being all cis, was a 

2:1 mixture of cis:trans, as determined by pmr. The cis 

isomer showed tvjo methyl peaks while the trans had only one. 

Endo-tricyclo[5.2.1.0^ *^1oct-6-ene (XXIXb) 

This olefin was prepared using the method of Gloss and 

Krantz (49)*, pmr 5.75-5.55 (t ,2, J=l. 9 Hz ), 2.9-2.6 (m,2), 

1.9-1.6 (m,2), 1.45-1.15 (m,2), 0.75-0.20 (m,2). 

Dimethyl bicyclo[5.1.Olhexane-endo,cis-2,4-dicarboxylate 

(XXIXp) 

A solution of 4.9 g of endo-tricyclo[3.:^.l^O^'^loct-6-ene 

in 500 ml of acetone was stirred and cooled (ice-bath) while 
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l8.3 g of potassium permanganate was added in portions over 

a 6 hr period. The solution was allowed to warm slowly to 

room temperature, stirred for an additional 10 hr, and fil­

tered. The filtercake, manganese dioxide, and the potassium 

salt of the desired diacid, was added to 250 ml of water, and 

sulfur dioxide was then "bubbled through the stirred suspension 

until no manganese dioxide remained. The solution was acid­

ified to Congo Red with ^0% sulfuric acid and extracted with 

three 100 ml portions of ether. The combined ether extracts 

were reduced to a 50 ml volume and extracted with three 20 ml 

portions of 10^ aqueous sodium bicarbonate. The extracts 

were combined, acidified to Congo Red with 50^ sulfuric acid, 

and extracted with three 100 ml portions of ethyl acetate. 

The combined extracts were dried with magnesium sulfate, fil­

tered, and the ethyl acetate removed under reduced pressure. 

The crude diacid was dissolved in 25 ml of methanol, and an 

etheral solution of diazomethane (78) was added until the 

characteristic color persisted. Removal of the solvent under 

reduced pressure gave 2.3 g (255^) of the diester. The sample 

was purified on a 15$ Carbowax 20 M column, 5' by -t" , at 190° : 

ir neat 5.78M*, pmr ( C C I 4 )  6  3.65 (s,6), 3.25-2.75 (m , 2 ) ,  

2.05-1.40 (m,4), O.9O-O.2O (m,2)', mass spectrum (70 eV) m/e 

(rel intensity) M+=198 (20), 167 (I8), 139 (100). 

Exo-tricyclo[3.2.1. 0^ ̂'^]oct-6-ene (XXXb ) 

To a hot solution of cupric acetate monohydrate (0.5 g) 

in 50 ml of glacial acetic acid was added 35 g of zinc, 30 
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mesh. The mixture was shaken for 3 min while being kept hot. 

The liquid was decanted off, and the residue washed with 50 

ml of acetic acid and three times with 50 ml of ether. Ether 

(100 ml) and a few ml of methylene iodide were added to the 

couple. The mixture was gently warmed to reflux and 24.0 g 

of bicyclo[2.2.1]heptadiene with the remaining methylene 

iodide (83.0 g in all) was added dropwise for 1-& hr. The 

mixture was refluxed 20 hr and then cooled. The liquid was 

decanted into a separatory funnel containing ice and 1 N 

hydrochloric acid. The layers were shaken and separated and 

the ether layer washed with another 40 ml of acid. After 

washing with bicarbonate, the ether was dried and the mixture 

distilled to give l6.4 g (59^) of product, which was a 5=1 

mixture of isomers (exo :endo) as analyzed by pmr in compari­

son to the pure endo product; exo isomer pmr (CCI4) Ô 6,40-

6.25 (t,2,J=1.9 Hz), 2.80-2.60 (m,2), 1.50-1.15 (m,2), 1.10-

0.60 (m,4). 

Dimethyl bicyclo[3.1.0Ihexane-exo,cis-2,4-dicarboxylate 

A 13.4 g sample of the above mixture of olefins was oxi­

dized with 65 g of potassium permanganate using the procedure 

for the preparation of XXIXp. A 6.2 g (2kfo) mixture of the 

diesters was obtained, which could be separated on a 5* by 

Carbowax 20 M column at 170°. The compound present in 

smaller quantity and having the shorter retention time, 

proved to be the endo-isomer upon comparison of its pmr with 

the previously prepared sample. The exo-isomer had spectral 
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properties in agreement with its structure*, ir neat 5.7B/i', 

pmr (CCI4) Ô 3.60 (s,6), 2.83-2.60 (d,2,J=8 Hz), 2.55-2.25 

(d,l,J=l4.5 Hz), 1.85-1.25 (m,5), O.8O-O.OO (m,2)-, mass 

spectrum (70 eV) m/e (rel intensity) M'^=198 (30), 167 (33), 

139 (100). 

Dimethyl tetracyclo[4.3.O.O^'^.O^'^Inonane-endo,cis-8,9-

dicarboxylate 

A sample of the dicarboxylic acid was esterfied with 

boron trifluoride methanol complex (80) to give the diester 

mp 64-66° [lit (100) 61-62°]*, pmr (CCI4) 6 3.60 (s,6), 3.25-

3.10 (t,2,J=2.0 Hz), 2.32-2.15 (m,2), I.9O-I.7O (m,l), 1.55-

1.45 (m,2), 1.27-1.15 (m,3)i ir (CCI4) 5.72W, mass spectrum 

(70 eV) m/e (rel intensity) M+=236 (40), 205 (25), 177 (15). 

TetracycloF4.3.0.0^0^^'''lnon-8-ene (XXXIb) 

Lead tetraacetate (94) (73 g) and 17.5 g of tetracyclo-

[4.3.0.02'4^Q3*7]nonane-endo,cis-8,9-dicarboxylic acid were 

mixed with 25O ml of pyridine and the mixture degassed for 

10 min with oxygen. The mixture was heated in an oil bath 

at 76° and after a few min the reaction began and quickly sub­

sided. After standing an additional 5 min the mixture was 

cooled and poured into a cool solution of 250 ml of nitric 

acid in I25O ml of water. The resulting mixture was extracted 

three times with 600 ml of ether, and the ether was washed 

twice with I50 ml of saturated sodium bicarbonate. After 

drying, the ether was distilled off and the product purified 

by bulb-to-bulb distillation under vacuum to give 1.55 g of 
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the pure olefin*, prnr (CCI4) Ô 6.02-5.92 (t,2,J=1.9 Hz), 

2.64-2.4? (m,2), 2.00-1.80 (m,l), I.8O-I.6O (m,l), 1.60-1.4? 

(t,2,J=1.9 Hz), 1.28-1.05 (d,2,J=5 Hz). 

Dimethyl trlcyclo[2.2.1.0^^^1heptane-endo,endo-3,5-dicar-

boxylate (XXXIp) 

Oxidation of 1.4 g of the above olefin with 6.2 g of 

potassium permanganate (see XXXIX) gave 0.95 g of the solid 

diester on workup. Purification by glpc on a 5' by 10^ QP-

1 column at 1?0° gave the analytical sample mp 80.5-81.5°', 

ir (CCI4) 5.78m*, prnr (CCI4) 6 3.5% (s,6), 2.6?-2.50 (m,l), 

2.45-2.55 (m,2), 1.60-1.15 (m,5)i mass spectrum (?0 eV) 

m/e (rel intensity) M'^=210 (4), 1?9 (25), 151 (24). 

Endo ,endo-2,6-dichloro-l,? ,7-^trimethylbicyclo[2.2. Hheptane 

This compound was prepared according to the procedure of 

Kwart and Null (101), mp 1?0-1?5° [lit (101) 175°]*, prnr 

(CCI4) 4.45-4.10 (d,d,2,J=5.0 Hz, J=10.2 Hz), 2.90-2.20 (m,2), 

1.90-1.65 (t,2,J=5.0 Hz), 1.65-1.40 (d,l,J=5.0 Hz), 1.05 

(s,5), 0.96 (s,6). 

1,7,7-Trimethylbicyclo[2.2.11heptadiene 

Using a modification of the method of Hanack et al., 

(102) 6.5 g of sodium were dissolved in 100 g of 1-nonanol. 

To this solution heated with an oil bath to 245°, 25 g of 

endo,endo-2,6-dichloro-1,?,?-trimethylbicyclo[2.2.Ijheptane 

was quickly added and the diolefin collected. Redistillation 

gave the product slightly contaminated with 1-nonanol. Glpc 

gave a sample mp 101-102° flit (102)105-105.5°]*, pmr 6 6.65-
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6,45 (d,d,2,J=2.2 Hz, J=5.4 Hz), 6.35-6.20 (d,d,2,J=1.3 Hz, 

J=5.4 Hz, 5.1-2.90 (m,l), 1.20 (s,3), 1.01 (8,6). 

Dimethyl 4,5,5-trlmethyltetracyclo[4.3.0.0^0^'^Inonane-

endo,cis-8,9-dicarboxylate (XXXVTp) and Dimethyl 5,5,6-tri-

methyltetracyclo[4.3.0.0^]nonane-endo ,cis-8,9-dicarbox­

ylate (XXXVp) 

l,7,7-Trimethylbicyclo[2.2.1]heptadiene (22.9 g) and l8 g 

of maleic anhydride were added to 7 ml of xylene and the mix­

ture was heated in an oil bath at 185-190° for l6 hr. Re­

moval of solvent and recrystallization of the residue from 40 

ml of ethyl acetate gave 4.5 g of a pure isomer mp 159-l6l°', 

pmr (GDCI3) 6 3.52-3.38 (d,d,2,J=1.9 Hz, J=3.2 Hz), 2.48-

2.33 (m,2), 1.30-1.20 (m,3), 0.86 (s,6), 0.84 (s,3). This 

isomer was the 5,5,6-trimethyl anhydride. Esterfication 

with boron trifluoride methanol complex (80) gave the pure 

dimethyl ester*, pmr (CCI4) Ô 3.59 (s,6), 3.10-2.95 (m,2), 

2.15-2.00 (m,2), 1.45-1.25 (d,2,J=5.0 Hz), I.I5-O.9O (t,l, 

J=5.0 Hz), 0.80 (8,6), 0.78 (s,3); ir (CCI4) 5.73M*. mass 

spectrum (70 eV) m/e (rel intensity) M'*'=278 (100), 247 (33), 

219 (15). The mother liquor left from the recrystallizations 

was combined and condensed to leave a semi-solid residue. 

The residue was passed through a silica gel column (50/5O 

benzene/pentane) to give 17.3 g of a mixture of isomers by 

pmr. Esterfication (80) gave a mixture of diesters which 

were separated into 4 peaks by glpc through a 5' by 15^ 

PFAP column at 210°. The first and fourth peaks were uni-
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dentified, the third peak, had a retention time and pmr iden­

tical to that of the 5,5,6-trimethyl diester. The second, 

and largest peak, was collected and identified as the 4,5,5-

trimethyl diester rap ^5-52°*, pmr (CCI4) Ô 5.57 (s,6), 3.05-

2.95 (t,2,J=2.0 Hz), 2.55-2.40 (m,2), 1.50-1.35 (m,l), 1.21-

1.11 (m,2), 1.01 (s,3), 0.85 (s,6)-, ir (CCI4) 5.73ui mass 

spectrum (70 eV) m/e (rel intensity) M'^=278 (20), 24? (12), 

219 (6). The mixture of anhydrides (4:1) was used in sub­

sequent reactions without further purification. 

5,5,6 -Trimethyltetracyclo[ 4.3.0.0^ 0^ ̂"^lnon-8-ene (XXXIIb ) 

5 j5 ,6-Trimethyltetracyclo[ 4.3.0.0^ 0^ ̂'''Jnonane -endo, 

cis-8,9-dicarboxylic anhydride (4.1 g) and 6 g of sodium 

carbonate were heated to 50° overnight in 100 ml of water. 

Following neutralization with hydrochloric acid, the diacid 

was filtered off, washed with water and dried to give 4.3 g 

of solid. Bisdecarboxylation with lead tetraacetate (l4 g) 

in pyridine under the usual conditions (see XXXIb) gave 540 

mg of product*, pmr Ô 6 . 03-5 . 92 (t,2,J=2.0 Hz), 2.45-2.30 

(m,2), 1.70-1.50 (t,l,J=4.8 Hz), 1.33-1.16 (d,2,J=4.8 Hz), 

0.80 (s ,6) ,  0 .60 (s ,3) .  

4,5,5-Trimethyltetracyclo[4.3.0.02'4.03'^inon-S-ene fXXXIIIb) 

Treatment of the 4:1 mixture (see XXXIIb) in the manner 

described above gave 0.9 g of a 1:1 mixture of two olefins, 

the 5,5,6-trimethyl olefin and the 4,5,5-trimethyl olefin. 

The former had an identical pmr to the sample described above, 

while the latter showed pmr ô 6.00-5,88 (t,2,J=2.0 Hz), 2.85-
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2.65 (m,2), 1.50-0.90 (m,3), 1.04 (s,3), O.83 (s,6). This 

mixture was difficult to separate in quantity and hence was 

used in the oxidation step without further separation. 

Dimethyl 4,7>7-trimethyltricyclo[2.g.l.O^'s1heptane-endo,endo-

3,5-dicarboxylate (XXXIIp) 

Oxidation of 0.5 g of 5,5,6-trimethyltetracyclo[4.3.0.-

Q3,7]non-8-ene with potassium permanganate in acetone 

(see XXIXp) gave 350 mg of solid diacid which was esterfied 

(80) and purified by glpc 10^ QP-l column (5' by -i") at 175° 

to give 80 mg of pure diester mp 70-73°i pmr (CCI4) 6 3.59 

(s,6),, 2.53 (s,2), 1.67-1.50 (d,2,J=5.3 Hz), 1.25 (s,3), 1.23-

0.98 (m,l), 0.90 (s,6); ir (CCI4) 5.78^', mass spectrum (70 

eV) m/e (rel intensity) M'*"=252 (l), 221 (33), 193 (16). 

Dimethyl 1,7,7-trimethyltrlcyclo[2.2.1.0^Iheptane-endo, 

endo-3,5-dicarboxylate (XXXIIIp) 

Oxidation of the corresponding mixture of olefins (see 

XXXIIIb) (850 mg) with potassium permanganate (see XXIX), and 

esterfication (80) gave 240 mg of a 2:1 mixture, the minor 

product being the 4,7,7-triraethyl isomer. Separation was 

accomplished by a 10$ <^-1 column (5' by •^") at 170°. The 

desired diester gave the following analysis*, mp 65.5-68.5°» 

pmr (CCI4) Ô 3.50 (s,6), 2.85-2.75 (m,2), 2.25-2.10 (m,l), 

1.43-1.33 (m,2), 1.05 (s,3), 0.95 (8,6); ir (CCI4) 5.78u', 

mass spectrum (70 eV) m/e (rel intensity) M'^=252 (10), 221 

(40), 193 (30). 
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Endo-tricyelo[3.2.2 . 0^''^lnon-6-ene -endo ,g1s -8,9-dicarboxylic 

anhydride 

The Diels-Alder adduct of maleic anhydride and cyclo-

heptatriene was prepared according to the method of Alder 

and Jacobs (103) mp 101-101.5° [lit (103)101°]*, pmr (CDGI3) 

Ô 6.00-5.76 (m,2), 3.62-3.33 (m,2), 3.33-3.17 (m,2), 1.30-

0.97 (m,2), 0.58-0.18 (m,2). 

Tricyclo[3.2.2. 0^ *^ 1 octa-6,8-diene 

The anodic oxidation of endo-tricyclof3.2.2lnon-6-ene-

endo,cis-8,9-dicarboxylic anhydride according to the procedure 

of Radlick ̂  (104) gave the desired olefin in 29^ yield', 

pmr (CCI4) 6 6.65-6.35 (m,2), 6.05-5.75 (m,2), 3.75-3.43 

(m,2), 1.30-0.95 (ra,2), O.78-O.2O (ra,2). 

Endo,endo- and exo,endo-tetracyclo[3.3.2.0^*^.0^^^ldec-9-ene 

Using the procedure described for the preparation of exo-

tricyclo[3.2.1.0^'^]oct-6-ene (XXXb), 2.7 g of tricyclo-

[3.2.2.0^'^]octa-6,8-diene reacted with 9 g of methylene io­

dide and 3.6 g of the zinc-copper couple at reflux for 3 hr 

to give 2.2 g bp 95-100° (15 mm) of a 2:1 mixture of olefins 

endo,endo :exo,endo. The ratio was determined by pmr which 

showed two types of olefinic protons. This mixture was then 

oxidized with permanganate without separation, yielding a 

single diacid and the unreacted endo,endo-isomer; pmr of 

endo,endo olefin in (CCI4) 6 5.40-5.10 (m,2), 3.10-2.70 (m,2), 

1.20-0.85 (m,4), 0.30-0.00 (m,4)*, pmr of the mixture showed 

the olefinic protons of the exo.endo-isomer at 6 6.10-5.85. 
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Dimethyl trans-trlcyclo[5.1.0.0^^^1octane-els-2,6-dicarbox-

ylate (XXXIXp) 

The above mixture of olefins (2.2 g) was oxidized with 

8.6 g of potassium permanganate in I50 ml of acetone buffered 

with 0.5 g of sodium bicarbonate using the procedure for XXIXp. 

Esterfication with boron trifluoride methanol complex, fol­

lowed by purification on a 10^ QP-1 glpc column gave 240 mg 

of the pure diester, mp 63.5-66°. Distillation of the re­

covered acetone gave 1.2 g of the endo ,endo-olefin which had 

been unaffected by the permanganate. The diester had a pmr 

(GCI4) 6 5.60 (8,6), 2.40-2.20 (m,2), I.60 to -0.35 (m,8)l 

ir (CCI4) 5.75M' mass spectrum (70 eV) m/e (rel intensity) 

M"^=224 (10), 193 (5), 165 (60). 

Endo,endo-8,9-dime thyl -endo-tricyclor3.2.2.0^*^lnon-6-ene 

(XXXATEIIp) 

This olefin was prepared using the procedure of Holland 

(15), the same as was used for the preparation of endo,endo-

8,9-dimethylbicyclo[3.2.2]non-6-ene. The spectral properties 

were the same as reported (15)', pmr 6 5.85-5.60 (m.,2), 2.70-

2.55 (m,2), 2.20-1.75 (m,2), I.IO-O.7O (m,8), O.I5 to -0.10 

(m,2) .  

Benzoyl nitrite method of preparation of semidiones from 

olefins 

The following procedure can be considered general for 

stable semidiones. Endo,endo-tetracyclo[3.3.2.0^ .0®*®]-

dec-9-ene (130 mg) was mixed with 1 ml of methylene chloride 
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and 300 mg of benzoyl nitrite in an nmr tube. After stand­

ing 10 hr the olefinic absorption had disappeared and the 

mixture was added to 10 ml of methylene chloride and washed 

twice with 10^ sodium bicarbonate. After removing the sol­

vent under reduced pressure, 25 ml of 3-1 hexane/benzene was 

added along with 3 g of grade III alumina. After refluxing 

for 4 hr, the mixture was dried and filtered, and the sol­

vent removed to give the benzoic acid ester of the a-ketone. 

This could be used to generate the semidione in degassed DMSO 

containing potassium t-butoxide without further purification. 

Endo -tr icyclo [3.2.2.O^* Inon -6 -ene 

A stirred suspension of 30 g of sodium amide in 50 ml of 

mineral oil was heated to 90° in a 250 ml three necked flask. 

A slow stream of nitrogen was passed through the flask while 

a solution of 50 ml of allyl chloride in 30 ml of mineral oil 

was added dropwise to the stirred suspension over a period of 

8 hr. The generated cyclopropene was passed through a short 

condenser and bubbled into a solution of 5 g of 1,3-cyclo-

hexadiene in 45 ml of pentane. To keep the cyclopropene from 

escaping, a dry ice acetone condenser was used as the passage 

for the escaping nitrogen. After the addition was complete, 

the pentane solution was stirred an additional 2 hr. Removal 

of the pentane followed by bulb-to bulb distillation under 

vacuum (0.5 mm) gave a fraction (1.3 g) which was 80^ product 

and 20^ cyclohexadiene. An analytical sample was obtained by 

glpc on a 5' by -i" 15^ Carbowax 20 M column at 120°' mp 59-
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60.5°; pmr (CCI4) 6 5.90-5.57 (m,2), 2.82-2.50 (m,2), 1.73-

0.96 (m,4), 0.96-0.60 (m,2), O.O8 to -0.27 (m,2). 

Dimethyl blcyclo[4.1.0lheptane-endo,endo-2,5-dlcarboxylate 

(XXXVIIp) 

Oxidation of the above olefin (1.8 g) with potassium per­

manganate (7.0 g) in acetone (see XXIX) gave 1.57 g of the 

crude diacid. Esterfication with boron trifluoride methanol 

complex (80) gave 1.4 g of the diester. Purification by glpc 

at 190° on a 5' by Carbowax 20 M column gave the analytical 

sample; ir neat 5.79%; pmr (CCI4) 6 5.60 (s,6), 5.0-2.6 

(m,2), 1.9-1.1 (m,6), 0.75-0.25 (m,2); mass spectrum (70 eV) 

m/e (rel intensity) M^=212 (6), I8I (2), 155 (87). 

Cis-1,2-cyclopropanediacetic acid 

This diacid was prepared.according to the method of 

Hofmann, et , (105) mp 128-150° [lit (105) 151-155°]; pmr 

(CH3OH) 6 2.6-2.25 (m,4), 1.55-0.70 (m,5), 0.5 to -0.05 (m,l). 

Dimethyl cyclopropane-cis-1,2-diacetate 

A 1 g sample of the corresponding diacid was dissolved 

in 25 ml of methanol, and a solution of diazomethane in ether 

(78) was slowly added until the color of the diazomethane 

persisted. Half of the ether was then distilled into dilute 

acetic acid and the remaining solvent then removed under re -

duced pressure. The crude product was distilled under vacuum 

to give 0.8 g (68^) of product bp 95-95° (0.5 mm); pmr (CCI4) 

6 5.56 (s,6), 2.45-1.95 (m,4), 1.7-0.5 (m,5), 0.10 to -0.25 

(m,l); mass spectrum (70 eV) m/e (rel intensity) M"'"=l86 (l). 
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155 (14), 127 (40). 

Cls-1,2-cyclopentanedicarboxylic anhydride 

This anhydride was prepared according to the method of 

Brenner (106): mp 69-70° [lit (106) mp 70-72°]. 

Dimethyl cis-1,2-cyclopentanedicarboxylate (XLIp) 

The diester was prepared by refluxing 0.6 g of the cor­

responding anhydride with 10 ml of methanol to which 2 drops 

of concentrated sulfuric acid had been added, over a period 

of 1 hr. The mixture was diluted with 25O ml of ether and 

successively extracted three times with 25 ml of 10$ sodium 

bicarbonate and two times with 25 ml of water. The ether 

solution was dried with magnesium sulfate and the solvent 

removed under reduced pressure. The product was purified by 

glpc on a 5' by 20$ DEGS column at 150° to give a 65$ yield 

of product*, pmr (CCI4) Ô 5.60 (8,6), 3.25-2.90 (m,2), 2.20-

1.60 (m,6)*, mass spectrum (70 eV) m/e (rel intensity) M'̂ =l86 

(1), 155 (100), 127 (20). 

Dimethyl trans,trans-2,3-dimethylcyclopentane-cis-1,4-di-

acetate (XLIVp) 

This diester was prepared from exo,exo-5,6-dimethylbi-

cyclo[2.2.1]hept-2-ene using the same sequence of reactions 

as was used in the preparation of the unmethylated material 

(iXp) from norbornene. Pure material was obtained by glpc on 

a 10% QP-1 column at l80°; pmr (CCI4) 6 3.60 (s,6), 2.40-2.10 

(m,4), 2.10-1.40 (m,5), 1.10-0.75 (m,7); ir neat 5.78%; 

mass spectrum (70 eV) m/e (rel intensity) M^=242 (O), 211 (8), 
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183 (1). 

Sources of Chemicals 

Chemical 

Substituted glutaric acids Aldrich 

Tetracyclo[4.3.0.02'4_Q3,7j nonane- Dr. G. ¥. Holland, Jr. 
endo,cis-8,9-dicarboxylic acid 

Exo,exo-5,6-dimethylbieyelo[2.2.1]- Dr. G. W. Holland, Jr. 
hept-2 -ene 
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